Pathway: Formation of apoptosome
Formation of apoptosome
Different models have been proposed to explain CASP9 activation: the “proximity‑driven dimerization model” and the “induced conformation model”. The first models states that upon binding to heptameric APAF1, monomers of procaspase‑9 are brought into close proximity at a high concentration (Acehan et al. 2002; Renatus et al. 2001). This induces dimerization which is sufficient for CASP9 activation whereas autoprocessing within the apoptosome complex merely stabilizes CASP9 dimer (Boatright KM et al. 2003; Pop C et al. 2006). The “induced conformation model” is based on the observation that CASP9 has a much higher level of catalytic activity when it's bound to the apoptosome. The model suggests that a conformational change occurs at the active site of CASP9 upon binding to APAF1 thus inducing CASP9 homodimerization and stabilizing it in the catalytically active conformation (Shiozaki EN et al. 2002). CASP9 activation may also involve formation of a multimeric CARD:CARD assembly between APAF1 and procaspase‑9 (Hu Q et al. 2014).
The two principal pathways of apoptosis are (1) the Bcl-2 inhibitable or intrinsic pathway induced by various forms of stress like intracellular damage, developmental cues, and external stimuli and (2) the caspase 8/10 dependent or extrinsic pathway initiated by the engagement of death receptors
The caspase 8/10 dependent or extrinsic pathway is a death receptor mediated mechanism that results in the activation of caspase-8 and caspase-10. Activation of death receptors like Fas/CD95, TNFR1, and the TRAIL receptor is promoted by the TNF family of ligands including FASL (APO1L OR CD95L), TNF, LT-alpha, LT-beta, CD40L, LIGHT, RANKL, BLYS/BAFF, and APO2L/TRAIL. These ligands are released in response to microbial infection, or as part of the cellular, humoral immunity responses during the formation of lymphoid organs, activation of dendritic cells, stimulation or survival of T, B, and natural killer (NK) cells, cytotoxic response to viral infection or oncogenic transformation.
The Bcl-2 inhibitable or intrinsic pathway of apoptosis is a stress-inducible process, and acts through the activation of caspase-9 via Apaf-1 and cytochrome c. The rupture of the mitochondrial membrane, a rapid process involving some of the Bcl-2 family proteins, releases these molecules into the cytoplasm. Examples of cellular processes that may induce the intrinsic pathway in response to various damage signals include: auto reactivity in lymphocytes, cytokine deprivation, calcium flux or cellular damage by cytotoxic drugs like taxol, deprivation of nutrients like glucose and growth factors like EGF, anoikis, transactivation of target genes by tumor suppressors including p53.
In many non-immune cells, death signals initiated by the extrinsic pathway are amplified by connections to the intrinsic pathway. The connecting link appears to be the truncated BID (tBID) protein a proteolytic cleavage product mediated by caspase-8 or other enzymes.
Reactome currently represents programmed cell death using the model of extrinsic signalling that leads to a molecular decision point pivoting on caspase-8 activation or inhibition. Caspase-8 activation tilts the cell towards apoptosis, while caspase-8 inhibition tilts the cell towards Regulated Necrosis.
The terminology and molecular definitions of cell death-related events annotated here are consistent with the 2015 recommendations of the Nomenclature Committee on Cell Death (NCCD) (Galluzzi L et al. 2015).