Degradation of the extracellular matrix

Sub-pathways within Pathway: Degradation of the extracellular matrix :
Degradation of the extracellular matrix:
Matrix metalloproteinases (MMPs), previously referred to as matrixins because of their role in degradation of the extracellular matrix (ECM), are zinc and calcium dependent proteases belonging to the metzincin family. They contain a characteristic zinc-binding motif HEXXHXXGXXH (Stocker & Bode 1995) and a conserved Methionine which forms a Met-turn. Humans have 24 MMP genes giving rise to 23 MMP proteins, as MMP23 is encoded by two identical genes. All MMPs contain an N-terminal secretory signal peptide and a prodomain with a conserved PRCGXPD motif that in the inactive enzyme is localized with the catalytic site, the cysteine acting as a fourth unpaired ligand for the catalytic zinc atom. Activation involves delocalization of the domain containing this cysteine by a conformational change or proteolytic cleavage, a mechanism referred to as the cysteine-switch (Van Wart & Birkedal-Hansen 1990). Most MMPs are secreted but the membrane type MT-MMPs are membrane anchored and some MMPs may act on intracellular proteins. Various domains determine substrate specificity, cell localization and activation (Hadler-Olsen et al. 2011). MMPs are regulated by transcription, cellular location (most are not activated until secreted), activating proteinases that can be other MMPs, and by metalloproteinase inhibitors such as the tissue inhibitors of metalloproteinases (TIMPs). MMPs are best known for their role in the degradation and removal of ECM molecules. In addition, cleavage of the ECM and other cell surface molecules can release ECM-bound growth factors, and a number of non-ECM proteins are substrates of MMPs (Nagase et al. 2006). MMPs can be divided into subgroups based on domain structure and substrate specificity but it is clear that these are somewhat artificial, many MMPs belong to more than one functional group (Vise & Nagase 2003, Somerville et al. 2003).
Extracellular matrix organization:
The extracellular matrix is a component of all mammalian tissues, a network consisting largely of the fibrous proteins collagen, elastin and associated-microfibrils, fibronectin and laminins embedded in a viscoelastic gel of anionic proteoglycan polymers. It performs many functions in addition to its structural role; as a major component of the cellular microenvironment it influences cell behaviours such as proliferation, adhesion and migration, and regulates cell differentiation and death (Hynes 2009).

ECM composition is highly heterogeneous and dynamic, being constantly remodeled (Frantz et al. 2010) and modulated, largely by matrix metalloproteinases (MMPs) and growth factors that bind to the ECM influencing the synthesis, crosslinking and degradation of ECM components (Hynes 2009). ECM remodeling is involved in the regulation of cell differentiation processes such as the establishment and maintenance of stem cell niches, branching morphogenesis, angiogenesis, bone remodeling, and wound repair. Redundant mechanisms modulate the expression and function of ECM modifying enzymes. Abnormal ECM dynamics can lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer.

Collagen is the most abundant fibrous protein within the ECM constituting up to 30% of total protein in multicellular animals. Collagen provides tensile strength. It associates with elastic fibres, composed of elastin and fibrillin microfibrils, which give tissues the ability to recover after stretching. Other ECM proteins such as fibronectin, laminins, and matricellular proteins participate as connectors or linking proteins (Daley et al. 2008).

Chondroitin sulfate, dermatan sulfate and keratan sulfate proteoglycans are structural components associated with collagen fibrils (Scott & Haigh 1985; Scott & Orford 1981), serving to tether the fibril to the surrounding matrix. Decorin belongs to the small leucine-rich repeat proteoglycan family (SLRPs) which also includes biglycan, fibromodulin, lumican and asporin. All appear to be involved in collagen fibril formation and matrix assembly (Ameye & Young 2002).

ECM proteins such as osteonectin (SPARC), osteopontin and thrombospondins -1 and -2, collectively referred to as matricellular proteins (reviewed in Mosher & Adams 2012) appear to modulate cell-matrix interactions. In general they induce de-adhesion, characterized by disruption of focal adhesions and a reorganization of actin stress fibers (Bornstein 2009). Thrombospondin (TS)-1 and -2 bind MMP2. The resulting complex is endocytosed by the low-density lipoprotein receptor-related protein (LRP), clearing MMP2 from the ECM (Yang et al. 2001).

Osteopontin (SPP1, bone sialoprotein-1) interacts with collagen and fibronectin (Mukherjee et al. 1995). It also contains several cell adhesive domains that interact with integrins and CD44.

Aggrecan is the predominant ECM proteoglycan in cartilage (Hardingham & Fosang 1992). Its relatives include versican, neurocan and brevican (Iozzo 1998). In articular cartilage the major non-fibrous macromolecules are aggrecan, hyaluronan and hyaluronan and proteoglycan link protein 1 (HAPLN1). The high negative charge density of these molecules leads to the binding of large amounts of water (Bruckner 2006). Hyaluronan is bound by several large proteoglycans proteoglycans belonging to the hyalectan family that form high-molecular weight aggregates (Roughley 2006), accounting for the turgid nature of cartilage.

The most significant enzymes in ECM remodeling are the Matrix Metalloproteinase (MMP) and A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) families (Cawston & Young 2010). Other notable ECM degrading enzymes include plasmin and cathepsin G. Many ECM proteinases are initially present as precursors, activated by proteolytic processing. MMP precursors include an amino prodomain which masks the catalytic Zn-binding motif (Page-McCawet al. 2007). This can be removed by other proteinases, often other MMPs. ECM proteinases can be inactivated by degradation, or blocked by inhibitors. Some of these inhibitors, including alpha2-macroglobulin, alpha1-proteinase inhibitor, and alpha1-chymotrypsin can inhibit a large variety of proteinases (Woessner & Nagase 2000). The tissue inhibitors of metalloproteinases (TIMPs) are potent MMP inhibitors (Brew & Nagase 2010).