Pathway: Interaction between L1 and Ankyrins
Reactions in pathway: Interaction between L1 and Ankyrins :
Interaction between L1 and Ankyrins
Ankyrins are a family of adaptor proteins that couple membrane proteins such as voltage gated Na+ channels and the Na+/K+ anion exchanger to the spectrin actin cytoskeleton. Ankyrins are encoded by three genes (ankyrin-G, -B and -R) of which ankyrin-G and -B are the major forms expressed in the developing nervous system. Ankyrins bind to the cytoplasmic domain of L1 CAMs and couple them and ion channel proteins, to the spectrin cytoskeleton. This binding enhances the homophilic adhesive activity of L1 and reduces its mobility within the plasma membrane. L1 interaction with ankyrin mediates branching and synaptogenesis of cortical inhibitory neurons.
Neurogenesis is the process by which neural stem cells give rise to neurons, and occurs both during embryonic and perinatal development as well as in specific brain lineages during adult life (reviewed in Gotz and Huttner, 2005; Yao et al, 2016; Kriegstein and Alvarez-Buylla, 2009).
As early steps towards capturing the array of processes by which a fertilized egg gives rise to the diverse tissues of the body, examples of several processes have been annotated. Aspects of processes involved in most developmental processes, transcriptional regulation of pluripotent stem cells, gastrulation, and activation of HOX genes during differentiation are annotated. More specialized processes include nervous system development , aspects of the roles of cell adhesion molecules in axonal guidance and myogenesis, transcriptional regulation in pancreatic beta cell, cardiogenesis, transcriptional regulation of granulopoeisis, transcriptional regulation of testis differentiation, transcriptional regulation of white adipocyte differentiation, and molecular events of "nodal" signaling, LGI-ADAM interactions, and keratinization.