Pathway: Translesion synthesis by POLK

Reactions in pathway: Translesion synthesis by POLK :

Translesion synthesis by POLK

DNA polymerase kappa (POLK) is a Y family DNA polymerase that is most efficient in translesion DNA synthesis (TLS) across oxidation derivatives of DNA bases, such as thymine glycol (Tg) and 8-oxoguanine (OGUA), as well as bulky DNA adducts, such as benzo(a)pyrene diol epoxide guanine adduct (BPDE-G) (Zhang et al. 2000, Fischhaber et al.2002, Avkin et al. 2004, Vasquez-Del Carpio et al. 2009, Yoon et al. 2010, Lior-Hoffmann et al. 2012, Christov et al. 2012, Yoon et al. 2014). POLK carries out TLS by forming a quaternary complex with REV1 and POLZ (REV3L:MAD2L2) at DNA damage sites, where POLK simultaneously binds REV1 and monoubiquitinated PCNA (Ohashi et al. 2009, Haracska, Unk et al. 2002, Bi et al. 2006). POLK and POLZ cooperate in the elongation of nucleotides inserted opposite to lesioned bases by POLK. Similarly to POLZ, POLK has low processivity and is error-prone (Ohashi et al. 2000, Haracska, Prakash et al. 2002, Yoon et al. 2010).

DNA Damage Bypass

In addition to various processes for removing lesions from the DNA, cells have developed specific mechanisms for tolerating unrepaired damage during the replication of the genome. These mechanisms are collectively called DNA damage bypass pathways. The Y family of DNA polymerases plays a key role in DNA damage bypass.

Y family DNA polymerases, REV1, POLH (DNA polymerase eta), POLK (DNA polymerase kappa) and POLI (DNA polymerase iota), as well as the DNA polymerase zeta (POLZ) complex composed of REV3L and MAD2L2, are able to carry out translesion DNA synthesis (TLS) or replicative bypass of damaged bases opposite to template lesions that arrest high fidelity, highly processive replicative DNA polymerase complexes delta (POLD) and epsilon (POLE). REV1, POLH, POLK, POLI and POLZ lack 3'->5' exonuclease activity and exhibit low fidelity and weak processivity. The best established TLS mechanisms are annotated here. TLS details that require substantial experimental clarification have been omitted. For recent and past reviews of this topic, please refer to Lehmann 2000, Friedberg et al. 2001, Zhu and Zhang 2003, Takata and Wood 2009, Ulrich 2011, Saugar et al. 2014.

DNA Repair

DNA repair is a phenomenal multi-enzyme, multi-pathway system required to ensure the integrity of the cellular genome. Living organisms are constantly exposed to harmful metabolic by-products, environmental chemicals and radiation that damage their DNA, thus corrupting genetic information. In addition, normal cellular pH and temperature create conditions that are hostile to the integrity of DNA and its nucleotide components. DNA damage can also arise as a consequence of spontaneous errors during DNA replication. The DNA repair machinery continuously scans the genome and maintains genome integrity by removing or mending any detected damage.

Depending on the type of DNA damage and the cell cycle status, the DNA repair machinery utilizes several different pathways to restore the genome to its original state. When the damage and circumstances are such that the DNA cannot be repaired with absolute fidelity, the DNA repair machinery attempts to minimize the harm and patch the insulted genome well enough to ensure cell viability.

Accumulation of DNA alterations that are the result of cumulative DNA damage and utilization of "last resort" low fidelity DNA repair mechanisms is associated with cellular senescence, aging, and cancer. In addition, germline mutations in DNA repair genes are the underlying cause of many familial cancer syndromes, such as Fanconi anemia, xeroderma pigmentosum, Nijmegen breakage syndrome and Lynch syndrome, to name a few.

When the level of DNA damage exceeds the capacity of the DNA repair machinery, apoptotic cell death ensues. Actively dividing cells have a very limited time available for DNA repair and are therefore particularly sensitive to DNA damaging agents. This is the main rationale for using DNA damaging chemotherapeutic drugs to kill rapidly replicating cancer cells.

There are seven main pathways employed in human DNA repair: DNA damage bypass, DNA damage reversal, base excision repair, nucleotide excision repair, mismatch repair, repair of double strand breaks and repair of interstrand crosslinks (Fanconi anemia pathway). DNA repair pathways are intimately associated with other cellular processes such as DNA replication, DNA recombination, cell cycle checkpoint arrest and apoptosis.

The DNA damage bypass pathway does not remove the damage, but instead allows translesion DNA synthesis (TLS) using a damaged template strand. Translesion synthesis allows cells to complete DNA replication, postponing the repair until cell division is finished. DNA polymerases that participate in translesion synthesis are error-prone, frequently introducing base substitutions and/or small insertions and deletions.

The DNA damage reversal pathway acts on a very narrow spectrum of damaging base modifications to remove modifying groups and restore DNA bases to their original state.

The base excision repair (BER) pathway involves a number of DNA glycosylases that cleave a vast array of damaged bases from the DNA sugar-phosphate backbone. DNA glycosylases produce a DNA strand with an abasic site. The abasic site is processed by DNA endonucleases, DNA polymerases and DNA ligases, the choice of which depends on the cell cycle stage, the identity of the participating DNA glycosylase and the presence of any additional damage. Base excision repair yields error-free DNA molecules.

Mismatch repair (MMR) proteins recognize mismatched base pairs or small insertion or deletion loops during DNA replication and correct erroneous base pairing by excising mismatched nucleotides exclusively from the nascent DNA strand, leaving the template strand intact.

Nucleotide excision repair pathway is involved in removal of bulky lesions that cause distortion of the DNA double helix. NER proteins excise the oligonucleotide that contains the lesion from the affected DNA strand, which is followed by gap-filling DNA synthesis and ligation of the repaired DNA molecule.

Double strand breaks (DSBs) in the DNA can be repaired via a highly accurate homologous recombination repair (HRR) pathway, or through error-prone nonhomologous end joining (NHEJ), single strand annealing (SSA) and microhomology-mediated end joining (MMEJ) pathways. DSBs can be directly generated by some DNA damaging agents, such as X-rays and reactive oxygen species (ROS). DSBs can also be intermediates of the Fanconi anemia pathway.

Interstrand crosslinking (ICL) agents damage the DNA by introducing covalent bonds between two DNA strands, which disables progression of the replication fork. The Fanconi anemia proteins repair the ICLs by unhooking them from one DNA strand. TLS enables the replication fork to bypass the unhooked ICL, resulting in two replicated DNA molecules, one of which contains a DSB and triggers double strand break repair, while the sister DNA molecule contains a bulky unhooked ICL, which is removed through NER.

Single strand breaks (SSBs) in the DNA, generated either by DNA damaging agents or as intermediates of DNA repair pathways such as BER, are converted into DSBs if the repair is not complete prior to DNA replication. Simultaneous inhibition of DSB repair and BER through cancer mutations and anti-cancer drugs, respectively, is synthetic lethal in at least some cancer settings, and is a promising new therapeutic strategy.

For reviews of DNA repair pathways, please refer to Lindahl and Wood 1999 and Curtin 2012.