Keratinization
Sub-pathways within Pathway: Keratinization :
Keratinization:
Keratins are the major structural protein of vertebrate epidermis, constituting up to 85% of a fully differentiated keratinocyte (Fuchs 1995). Keratins belong to a superfamily of intermediate filament (IF) proteins that form alpha-helical coiled-coil dimers, which associate laterally and end-to-end to form approximately 10 nm diameter filaments. Keratin filaments are heteropolymeric, formed from equal amounts of acidic type I and basic /neutral type 2 keratins. Humans have 54 keratin genes (Schweitzer et al. 2006). They have highly specific expression patterns, related to the epithelial type and stage of differentiation. Roughly half of human keratins are specific to hair follicles (Langbein & Schweizer 2005). Keratin filaments bundle into tonofilaments that span the cytoplasm and bind to desmosomes and other cell membrane structures (Waschke 2008). This reflects their primary function, maintaining the mechanical stability of individual cells and epithelial tissues (Moll et al. 2008).
Developmental Biology:
As early steps towards capturing the array of processes by which a fertilized egg gives rise to the diverse tissues of the body, examples of several processes have been annotated. Aspects of processes involved in most developmental processes, transcriptional regulation of pluripotent stem cells, gastrulation, and activation of HOX genes during differentiation are annotated. More specialized processes include nervous system development , aspects of the roles of cell adhesion molecules in axonal guidance and myogenesis, transcriptional regulation in pancreatic beta cell, cardiogenesis, transcriptional regulation of granulopoeisis, transcriptional regulation of testis differentiation, transcriptional regulation of white adipocyte differentiation, and molecular events of "nodal" signaling, LGI-ADAM interactions, and keratinization.