Pathway: Response of EIF2AK4 (GCN2) to amino acid deficiency
Reactions in pathway: Response of EIF2AK4 (GCN2) to amino acid deficiency :
Response of EIF2AK4 (GCN2) to amino acid deficiency
EIF2AK4 (GCN2) senses amino acid deficiency by binding uncharged tRNAs near the ribosome and responds by phosphorylating EIF2S1, the alpha subunit of the translation initiation factor EIF2 (inferred from yeast homologs and mouse homologs, reviewed in Chaveroux et al. 2010, Castilho et al. 2014, Gallinetti et al. 2013, Bröer and Bröer 2017, Wek 2018). Phosphorylated EIF2S1 reduces translation of most mRNAs but increases translation of downstream ORFs in mRNAs such as ATF4 that contain upstream ORFs (inferred from mouse homologs in Vattem and Wek 2004, reviewed in Hinnebusch et al. 2016, Sonenberg and Hinnebusch 2009). ATF4, in turn, activates expression of genes involved in responding to amino acid deficiency such as DDIT3 (CHOP), ASNS (asparagine synthetase), CEBPB, and ATF3 (reviewed in Kilberg et al. 2012, Wortel et al. 2017). In mice, EIF2AK4 in the brain may responsible for avoidance of diets lacking essential amino acids (Hao et al. 2005, Maurin et al. 2005, see also Leib and Knight 2015, Gietzen et al. 2016, reviewed in Dever and Hinnebusch 2005).
EIF2AK4 is bound to both the ribosome and GCN1, which is required for activation of EIF2AK4 and may act by shuttling uncharged tRNAs from the A site of the ribosome to EIF2AK4. Upon binding tRNA, EIF2AK4 trans-autophosphorylates. Phosphorylated EIF2AK4 then phosphorylates EIF2S1 on serine-52, the same serine residue phosphorylated by other kinases of the integrated stress response: EIF2AK1 (HRI, activated by heme deficiency and other stresses), EIF2AK2 (PKR, activated by double-stranded RNA), and EIF2AK3 (PERK, activated by unfolded proteins) (reviewed in Hinnebusch 1994, Wek et al. 2006, Donnelly et al. 2013, Pakos-Zebrucka et al. 2016, Wek 2018),
EIF2AK4 is bound to both the ribosome and GCN1, which is required for activation of EIF2AK4 and may act by shuttling uncharged tRNAs from the A site of the ribosome to EIF2AK4. Upon binding tRNA, EIF2AK4 trans-autophosphorylates. Phosphorylated EIF2AK4 then phosphorylates EIF2S1 on serine-52, the same serine residue phosphorylated by other kinases of the integrated stress response: EIF2AK1 (HRI, activated by heme deficiency and other stresses), EIF2AK2 (PKR, activated by double-stranded RNA), and EIF2AK3 (PERK, activated by unfolded proteins) (reviewed in Hinnebusch 1994, Wek et al. 2006, Donnelly et al. 2013, Pakos-Zebrucka et al. 2016, Wek 2018),
Cells are subject to external molecular and physical stresses such as foreign molecules that perturb metabolic or signaling processes, and changes in temperature or pH. Cells are also subject to internal molecular stresses such as production of reactive metabolic byproducts. The ability of cells and tissues to modulate molecular processes in response to such stresses is essential to the maintenance of tissue homeostasis (Kultz 2005). Specific stress-related processes annotated here are cellular response to hypoxia, cellular response to heat stress, cellular senescence, HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of ligand, response of EIF2AK1 (HRI) to heme deficiency, heme signaling, cellular response to chemical stress, cellular response to starvation, and unfolded protein response.
Individual cells detect and respond to diverse external molecular and physical signals. Appropriate responses to these signals are essential for normal development, maintenance of homeostasis in mature tissues, and effective defensive responses to potentially noxious agents (Kultz 2005). It is convenient, if somewhat arbitrary, to distinguish responses to signals involved in development and homeostasis from ones involved in stress responses, and that classification is followed here, with macroautophagy and responses to metal ions classified as responses to normal external stimuli, while responses to hypoxia, reactive oxygen species, and heat, and the process of cellular senescence are classified as stress responses. Signaling cascades are integral components of all of these response mechanisms but because of their number and diversity, they are grouped in a separate signal transduction superpathway in Reactome.