Pathway: Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants

Reactions in pathway: Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants :

Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants

Signaling by EGFR is frequently activated in cancer through activating mutations in the coding sequence of the EGFR gene, resulting in expression of a constitutively active mutant protein.

Epidermal growth factor receptor kinase domain mutants are present in ~16% of non-small-cell lung cancers (NSCLCs), but are also found in other cancer types, such as breast cancer, colorectal cancer, ovarian cancer and thyroid cancer. EGFR kinase domain mutants harbor activating mutations in exons 18-21 which code for the kinase domain (amino acids 712-979) . Small deletions, insertions or substitutions of amino acids within the kinase domain lock EGFR in its active conformation in which the enzyme can dimerize and undergo autophosphorylation spontaneously, without ligand binding (although ligand binding ability is preserved), and activate downstream signaling pathways that promote cell survival (Greulich et al. 2005, Zhang et al. 2006, Yun et al. 2007, Red Brewer et al. 2009).

Point mutations in the extracellular domain of EGFR are frequently found in glioblastoma. Similar to kinase domain mutations, point mutations in the extracellular domain result in constitutively active EGFR proteins that signal in the absence of ligands, but ligand binding ability and responsiveness are preserved (Lee et al. 2006).

EGFR kinase domain mutants need to maintain association with the chaperone heat shock protein 90 (HSP90) for proper functioning (Shimamura et al. 2005, Lavictoire et al. 2003). CDC37 is a co-chaperone of HSP90 that acts as a scaffold and regulator of interaction between HSP90 and its protein kinase clients. CDC37 is frequently over-expressed in cancers involving mutant kinases and acts as an oncogene (Roe et al. 2004, reviewed by Gray Jr. et al. 2008).

Over-expression of the wild-type EGFR or EGFR cancer mutants results in aberrant activation of downstream signaling cascades, namely RAS/RAF/MAP kinase signaling and PI3K/AKT signaling, and possibly signaling by PLCG1, which leads to increased cell proliferation and survival, providing selective advantage to cancer cells that harbor activating mutations in the EGFR gene (Sordella et al. 2004, Huang et al. 2007).

While growth factor activated wild-type EGFR is promptly down-regulated by internalization and degradation, cancer mutants of EGFR demonstrate prolonged activation (Lynch et al. 2004). Association of HSP90 with EGFR kinase domain mutants negatively affects CBL-mediated ubiquitination, possibly through decreasing the affinity of EGFR kinase domain mutants for phosphorylated CBL, so that CBL dissociates from the complex upon phosphorylation and cannot perform ubiquitination (Yang et al. 2006, Padron et al. 2007).

Various molecular therapeutics are being developed to target aberrantly activated EGFR in cancer. Non-covalent (reversible) small tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, selectively bind kinase domain of EGFR, competitively inhibiting ATP binding and subsequent autophosphorylation of EGFR dimers. EGFR kinase domain mutants sensitive to non-covalent TKIs exhibit greater affinity for TKIs than ATP compared with the wild-type EGFR protein, and are therefore preferential targets of non-covalent TKI therapeutics (Yun et al. 2007). EGFR proteins that harbor point mutations in the extracellular domain also show sensitivity to non-covalent tyrosine kinase inhibitors (Lee et al. 2006). EGFR kinase domain mutants harboring small insertions in exon 20 or a secondary T790M mutation are resistant to reversible TKIs (Balak et al. 2006) due to increased affinity for ATP (Yun et al. 2008), and are targets of covalent (irreversible) TKIs that form a covalent bond with EGFR cysteine residue C397. However, effective concentrations of covalent TKIs also inhibit wild-type EGFR, causing severe side effects (Zhou et al. 2009). Hence, covalent TKIs have not shown much promise in clinical trials (Reviewed by Pao and Chmielecki in 2010).

Diseases of signal transduction by growth factor receptors and second messengers

Signaling processes are central to human physiology (e.g., Pires-da Silva & Sommer 2003), and their disruption by either germ-line and somatic mutation can lead to serious disease. Here, the molecular consequences of mutations affecting visual signal transduction and signaling by diverse growth factors are annotated.

Disease

Biological processes are captured in Reactome by identifying the molecules (DNA, RNA, protein, small molecules) involved in them and describing the details of their interactions. From this molecular viewpoint, human disease pathways have three mechanistic causes: the inclusion of microbially-expressed proteins, altered functions of human proteins, or changed expression levels of otherwise functionally normal human proteins.

The first group encompasses the infectious diseases such as influenza, tuberculosis and HIV infection. The second group involves human proteins modified either by a mutation or by an abnormal post-translational event that produces an aberrant protein with a novel function. Examples include somatic mutations of EGFR and FGFR (epidermal and fibroblast growth factor receptor) genes, which encode constitutively active receptors that signal even in the absence of their ligands, or the somatic mutation of IDH1 (isocitrate dehydrogenase 1) that leads to an enzyme active on 2-oxoglutarate rather than isocitrate, or the abnormal protein aggregations of amyloidosis which lead to diseases such as Alzheimer's.

Infectious diseases are represented in Reactome as microbial-human protein interactions and the consequent events. The existence of variant proteins and their association with disease-specific biological processes is represented by inclusion of the modified protein in a new or variant reaction, an extension to the 'normal' pathway. Diseases which result from proteins performing their normal functions but at abnormal rates can also be captured, though less directly. Many mutant alleles encode proteins that retain their normal functions but have abnormal stabilities or catalytic efficiencies, leading to normal reactions that proceed to abnormal extents. The phenotypes of such diseases can be revealed when pathway annotations are combined with expression or rate data from other sources.

Depending on the biological pathway/process immediately affected by disease-causing gene variants, non-infectious diseases in Reactome are organized into diseases of signal transduction by growth factore receptors and second messengers, diseases of mitotic cell cycle, diseases of cellular response to stress, diseases of programmed cell death, diseases of DNA repair, disorders of transmembrane transporters, diseases of metabolism, diseases of immune system, diseases of neuronal system, disorders of developmental biology, disorders of extracellular matrix organization, and diseases of hemostatis.