Pathway: Regulation of cholesterol biosynthesis by SREBP (SREBF)
Regulation of cholesterol biosynthesis by SREBP (SREBF)
Newly synthesized SREBPs are transmembrane proteins that bind SCAP in the endoplasmic reticulum (ER) membrane. SCAP binds cholesterol which causes a conformational change that allows SCAP to interact with INSIG, retaining the SCAP:SREBP complex in the ER. INSIG binds oxysterols, which cause INSIG to bind SCAP and retain SCAP:SREBP in the endoplasmic reticulum.
In low cholesterol (below about 5 mol%) SCAP no longer interacts with cholesterol or INSIG and binds Sec24 of the CopII coat complex instead. Thus SCAP:SREBP transits with the CopII complex from the ER to the Golgi. In the Golgi SREBP is cleaved by S1P and then by S2P, releasing the N-terminal fragment of SREBP into the cytosol. The N-terminal fragment is imported to the nucleus by importin-beta and then acts with other factors, such as SP1 and NF-Y, to activate transcription of target genes. Targets of SREBP include the genes encoding all enzymes of cholesterol biosynthesis and several genes involved in lipogenesis. SREBP2 most strongly activates cholesterol biosynthesis while SREBP1C most strongly activates lipogenesis.
The central steroid in human biology is cholesterol, obtained from animal fats consumed in the diet or synthesized de novo from acetyl-coenzyme A. (Vegetable fats contain various sterols but no cholesterol.) Cholesterol is an essential constituent of lipid bilayer membranes and is the starting point for the biosyntheses of bile acids and salts, steroid hormones, and vitamin D. Bile acids and salts are mostly synthesized in the liver. They are released into the intestine and function as detergents to solubilize dietary fats. Steroid hormones are mostly synthesized in the adrenal gland and gonads. They regulate energy metabolism and stress responses (glucocorticoids), salt balance (mineralocorticoids), and sexual development and function (androgens and estrogens). At the same time, chronically elevated cholesterol levels in the body are associated with the formation of atherosclerotic lesions and hence increased risk of heart attacks and strokes. The human body lacks a mechanism for degrading excess cholesterol, although an appreciable amount is lost daily in the form of bile salts and acids that escape recycling.
Aspects of lipid metabolism currently annotated in Reactome include lipid digestion, mobilization, and transport; fatty acid, triacylglycerol, and ketone body metabolism; peroxisomal lipid metabolism; phospholipid and sphingolipid metabolism; cholesterol biosynthesis; bile acid and bile salt metabolism; and steroid hormone biosynthesis.
At the same time, all of these processes are tightly integrated. Intermediates in reactions of energy generation are starting materials for biosyntheses of amino acids and other compounds, broad-specificity oxidoreductase enzymes can be involved in both detoxification reactions and biosyntheses, and hormone-mediated signaling processes function to coordinate the operation of energy-generating and energy-storing reactions and to couple these to other biosynthetic processes.