Pathway: DDX58/IFIH1-mediated induction of interferon-alpha/beta
Reactions in pathway: DDX58/IFIH1-mediated induction of interferon-alpha/beta :
DDX58/IFIH1-mediated induction of interferon-alpha/beta
RIG-I-like helicases (RLHs) the retinoic acid inducible gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) are RNA helicases that recognize viral double-stranded RNA (dsRNA) present within the cytoplasm (Yoneyama M & Fujita T 2007, 2008). Upon viral infection dsRNA is generated by positive-strand RNA virus families such as Flaviviridae and Coronaviridae, negative-strand RNA virus families including Orthomyxoviridae and Paramyxoviridae, and DNA virus families such as Herpesviridae and Adenoviridae (Weber F et al. 2006; Son KN et al. 2015). Functionally RIG-I and MDA5 positively regulate the IFN genes in a similar fashion, however they differ in their response to different viral species. RIG-I is essential for detecting influenza virus, Sendai virus, VSV and Japanese encephalitis virus (JEV), whereas MDA5 is essential in sensing encephalomyocarditis virus (EMCV), Mengo virus and Theiler's virus, all of which belong to the picornavirus family. RIG-I and MDA5 signalling results in the activation of IKK epsilon and (TKK binding kinase 1) TBK1, two serine/threonine kinases that phosphorylate interferon regulatory factor 3 and 7 (IRF3 and IRF7). Upon phosphorylation, IRF3 and IRF7 translocate to the nucleus and subsequently induce interferon alpha (IFNA) and interferon beta (IFNB) gene transcription (Yoneyama M et al. 2004; Yoneyama M & Fujita T 2007, 2008).
Innate immunity encompases the nonspecific part of immunity tha are part of an individual's natural biologic makeup
Humans are exposed to millions of potential pathogens daily, through contact, ingestion, and inhalation. Our ability to avoid infection depends on the adaptive immune system and during the first critical hours and days of exposure to a new pathogen, our innate immune system.