Pathway: Signaling by FGFR1 in disease
Signaling by FGFR1 in disease
Activating mutation P252R in FGFR1 is associated with the development of Pfeiffer syndrome, characterized by craniosynostosis (premature fusion of several sutures in the skull) and broadened thumbs and toes (Muenke, 1994; reviewed in Cunningham, 2007). This residue falls in a highly conserved Pro-Ser dipeptide between the second and third Ig domains of the extracellular region of the receptor. The mutation is thought to increase the number of hydrogen bonds formed with the ligand and to thereby increase ligand-binding affinity (Ibrahimi, 2004a). Unlike other FGF receptors, few activating point mutations in the FGFR1 coding sequence have been identified in cancer. Point mutations in the Ig II-III linker analagous to the P252R Pfeiffer syndrome mutation have been identified in lung cancer and melanoma (Ruhe, 2007; Davies, 2005), and two kinase-domain mutations in FGFR1 have been identified in glioblastoma (Rand, 2005, Network TCGA, 2008).
In contrast, FGFR1 is a target of chromosomal rearrangements in a number of cancers. FGFR1 has been shown to be recurrently translocated in the 8p11 myeloproliferative syndrome (EMS), a pre-leukemic condition also known as stem cell leukemia/lymphoma (SCLL) that rapidly progresses to leukemia. This translocation fuses the kinase domain of FGFR1 with the dimerization domain of one of 10 identified fusion partners, resulting in the constitutive dimerization and activation of the kinase (reviewed in Jackson, 2010).
Amplification of the FGFR1 gene has been implicated as a oncogenic factor in a range of cancers, including breast, ovarian, bladder, lung, oral squamous carcinomas, and rhabdomyosarcoma (reviewed in Turner and Grose, 2010; Wesche, 2011; Greulich and Pollock, 2011), although there are other candidate genes in the amplified region and the definitive role of FGFR1 has not been fully established.
More recently, FGFR1 fusion proteins have been identified in a number of cancers; these are thought to undergo constitutive ligand-independent dimerization and activation based on dimerization motifs found in the fusion partners (reviewed in Parker, 2014).
The first group encompasses the infectious diseases such as influenza, tuberculosis and HIV infection. The second group involves human proteins modified either by a mutation or by an abnormal post-translational event that produces an aberrant protein with a novel function. Examples include somatic mutations of EGFR and FGFR (epidermal and fibroblast growth factor receptor) genes, which encode constitutively active receptors that signal even in the absence of their ligands, or the somatic mutation of IDH1 (isocitrate dehydrogenase 1) that leads to an enzyme active on 2-oxoglutarate rather than isocitrate, or the abnormal protein aggregations of amyloidosis which lead to diseases such as Alzheimer's.
Infectious diseases are represented in Reactome as microbial-human protein interactions and the consequent events. The existence of variant proteins and their association with disease-specific biological processes is represented by inclusion of the modified protein in a new or variant reaction, an extension to the 'normal' pathway. Diseases which result from proteins performing their normal functions but at abnormal rates can also be captured, though less directly. Many mutant alleles encode proteins that retain their normal functions but have abnormal stabilities or catalytic efficiencies, leading to normal reactions that proceed to abnormal extents. The phenotypes of such diseases can be revealed when pathway annotations are combined with expression or rate data from other sources.
Depending on the biological pathway/process immediately affected by disease-causing gene variants, non-infectious diseases in Reactome are organized into diseases of signal transduction by growth factore receptors and second messengers, diseases of mitotic cell cycle, diseases of cellular response to stress, diseases of programmed cell death, diseases of DNA repair, disorders of transmembrane transporters, diseases of metabolism, diseases of immune system, diseases of neuronal system, disorders of developmental biology, disorders of extracellular matrix organization, and diseases of hemostatis.