Pathway: TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain
Reactions in pathway: TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain :
TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain
BTG2 is induced by TP53, leading to cessation of cellular proliferation (Rouault et al. 1996, Duriez et al. 2002). BTG2 binds to the CCR4-NOT complex and promotes mRNA deadenylation activity of this complex. Interaction between BTG2 and CCR4-NOT is needed for the antiproliferative activity of BTG2, but the underlying mechanism has not been elucidated (Rouault et al. 1998, Mauxion et al. 2008, Horiuchi et al. 2009, Doidge et al. 2012, Ezzeddine et al. 2012). Two polo-like kinases, PLK2 and PLK3, are direct transcriptional targets of TP53. TP53-mediated induction of PLK2 may be important for prevention of mitotic catastrophe after spindle damage (Burns et al. 2003). PLK2 is involved in the regulation of centrosome duplication through phosphorylation of centrosome-related proteins CENPJ (Chang et al. 2010) and NPM1 (Krause and Hoffmann 2010). PLK2 is frequently transcriptionally silenced through promoter methylation in B-cell malignancies (Syed et al. 2006). Induction of PLK3 transcription by TP53 (Jen and Cheung 2005) may be important for coordination of M phase events through PLK3-mediated nuclear accumulation of CDC25C (Bahassi et al. 2004). RGCC is induced by TP53 and implicated in cell cycle regulation, possibly through its association with PLK1 (Saigusa et al. 2007). PLAGL1 (ZAC1) is a zinc finger protein directly transcriptionally induced by TP53 (Rozenfeld-Granot et al. 2002). PLAGL1 expression is frequently lost in cancer (Varrault et al. 1998) and PLAGL1 has been implicated in both cell cycle arrest and apoptosis (Spengler et al. 1997), but its mechanism of action remains unknown.
RNA polymerase II (Pol II) is the central enzyme that catalyses DNA- directed mRNA synthesis during the transcription of protein-coding genes. Pol II consists of a 10-subunit catalytic core, which alone is capable of elongating the RNA transcript, and a complex of two subunits, Rpb4/7, that is required for transcription initiation.
The transcription cycle is divided in three major phases: initiation, elongation, and termination. Transcription initiation include promoter DNA binding, DNA melting, and initial synthesis of short RNA transcripts. The transition from initiation to elongation, is referred to as promoter escape and leads to a stable elongation complex that is characterized by an open DNA region or transcription bubble. The bubble contains the DNA-RNA hybrid, a heteroduplex of eight to nine base pairs. The growing 3-end of the RNA is engaged with the polymerase complex active site. Ultimately transcription terminates and Pol II dissocitates from the template.
The transcription cycle is divided in three major phases: initiation, elongation, and termination. Transcription initiation include promoter DNA binding, DNA melting, and initial synthesis of short RNA transcripts. The transition from initiation to elongation, is referred to as promoter escape and leads to a stable elongation complex that is characterized by an open DNA region or transcription bubble. The bubble contains the DNA-RNA hybrid, a heteroduplex of eight to nine base pairs. The growing 3-end of the RNA is engaged with the polymerase complex active site. Ultimately transcription terminates and Pol II dissocitates from the template.
Gene expression encompasses transcription and translation and the regulation of these processes. RNA Polymerase I Transcription produces the large preribosomal RNA transcript (45S pre-rRNA) that is processed to yield 18S rRNA, 28S rRNA, and 5.8S rRNA, accounting for about half the RNA in a cell. RNA Polymerase II transcription produces messenger RNAs (mRNA) as well as a subset of non-coding RNAs including many small nucleolar RNAs (snRNA) and microRNAs (miRNA). RNA Polymerase III Transcription produces transfer RNAs (tRNA), 5S RNA, 7SL RNA, and U6 snRNA. Transcription from mitochondrial promoters is performed by the mitochondrial RNA polymerase, POLRMT, to yield long transcripts from each DNA strand that are processed to yield 12S rRNA, 16S rRNA, tRNAs, and a few RNAs encoding components of the electron transport chain. Regulation of gene expression can be divided into epigenetic regulation, transcriptional regulation, and post-transcription regulation (comprising translational efficiency and RNA stability). Epigenetic regulation of gene expression is the result of heritable chemical modifications to DNA and DNA-binding proteins such as histones. Epigenetic changes result in altered chromatin complexes that influence transcription. Gene Silencing by RNA mostly occurs post-transcriptionally but can also affect transcription. Small RNAs originating from the genome (miRNAs) or from exogenous RNA (siRNAs) are processed and transferred to the RNA-induced silencing complex (RISC), which interacts with complementary RNA to cause cleavage, translational inhibition, or transcriptional inhibition.