Pathway: Signaling by plasma membrane FGFR1 fusions

Reactions in pathway: Signaling by plasma membrane FGFR1 fusions :

Signaling by plasma membrane FGFR1 fusions

In addition to the cytosolic FGFR1 fusions identified in 8 myeloproliferative syndrome, plasma membrane localized FGFR1 fusions have been identified in glioblastoma, breast cancer and non small cell lung cancers (Singh et al, 2012; Wu et al, 2013; Wang et al, 2014). A FGFR1:TACC1 fusion identified in glioblastoma promotes anchorage independent growth when expressed in Rat1A cells, while an ERLIN2:FGFR1 fusion in breast cancer shows constitutive autophosphorylation when expressed in HEK 293 cells (Singh et al, 2012; Wu et al, 2013). All FGFR1 fusions tested also shown increased sensitivity to growth inhibition upon treatment with kinase inhibitors (Singh et al, 2012; Wu et al, 2013; Wang et al, 2014; reviewed in Parker et al, 2014).

Diseases of signal transduction by growth factor receptors and second messengers

Signaling processes are central to human physiology (e.g., Pires-da Silva & Sommer 2003), and their disruption by either germ-line and somatic mutation can lead to serious disease. Here, the molecular consequences of mutations affecting visual signal transduction and signaling by diverse growth factors are annotated.

Disease

Biological processes are captured in Reactome by identifying the molecules (DNA, RNA, protein, small molecules) involved in them and describing the details of their interactions. From this molecular viewpoint, human disease pathways have three mechanistic causes: the inclusion of microbially-expressed proteins, altered functions of human proteins, or changed expression levels of otherwise functionally normal human proteins.

The first group encompasses the infectious diseases such as influenza, tuberculosis and HIV infection. The second group involves human proteins modified either by a mutation or by an abnormal post-translational event that produces an aberrant protein with a novel function. Examples include somatic mutations of EGFR and FGFR (epidermal and fibroblast growth factor receptor) genes, which encode constitutively active receptors that signal even in the absence of their ligands, or the somatic mutation of IDH1 (isocitrate dehydrogenase 1) that leads to an enzyme active on 2-oxoglutarate rather than isocitrate, or the abnormal protein aggregations of amyloidosis which lead to diseases such as Alzheimer's.

Infectious diseases are represented in Reactome as microbial-human protein interactions and the consequent events. The existence of variant proteins and their association with disease-specific biological processes is represented by inclusion of the modified protein in a new or variant reaction, an extension to the 'normal' pathway. Diseases which result from proteins performing their normal functions but at abnormal rates can also be captured, though less directly. Many mutant alleles encode proteins that retain their normal functions but have abnormal stabilities or catalytic efficiencies, leading to normal reactions that proceed to abnormal extents. The phenotypes of such diseases can be revealed when pathway annotations are combined with expression or rate data from other sources.

Depending on the biological pathway/process immediately affected by disease-causing gene variants, non-infectious diseases in Reactome are organized into diseases of signal transduction by growth factore receptors and second messengers, diseases of mitotic cell cycle, diseases of cellular response to stress, diseases of programmed cell death, diseases of DNA repair, disorders of transmembrane transporters, diseases of metabolism, diseases of immune system, diseases of neuronal system, disorders of developmental biology, disorders of extracellular matrix organization, and diseases of hemostatis.