Pathway: Aryl hydrocarbon receptor signalling

Reactions in pathway: Aryl hydrocarbon receptor signalling :

Aryl hydrocarbon receptor signalling

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that belongs to the basic helix-loop-helix/PER-ARNT-SIM family of DNA binding proteins and controls the expression of a diverse set of genes. Two major types of environmental compounds can activate AHR signaling: halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAH) such as benzo(a)pyrene. Unliganded AHR forms a complex in the cytosol with two copies of 90kD heat shock protein (HSP90AB1), one X-associated protein (AIP), and one p23 molecular chaperone protein (PTGES3). After ligand binding and activation, the AHR complex translocates to the nucleus, disassociates from the chaperone subunits, dimerises with the aryl hydrocarbon receptor nuclear translocator (ARNT) and transactivates target genes via binding to xenobiotic response elements (XREs) in their promoter regions. AHR targets genes of Phase I and Phase II metabolism, such as cytochrome P450 1A1 (CYP1A1), cytochorme P450 1B1 (CYP1B1), NAD(P)H:quinone oxidoreductase I (NQO1) and aldehyde dehydrogenase 3 (ALHD3A1). This is thought to be an organism's response to foreign chemical exposure and normally, foreign chemicals are made less reactive by the induction and therefore increased activity of these enzymes (Beischlag et al. 2008).

AHR itself is regulated by the aryl hydrocarbon receptor repressor (AHRR, aka BHLHE77, KIAA1234), an evolutionarily conserved bHLH-PAS protein that inhibits both xenobiotic-induced and constitutively active AHR transcriptional activity in many species. AHRR resides predominantly in the nuclear compartment where it competes with AHR for binding to ARNT. As a result, there is competition between AHR:ARNT and AHRR:ARNT complexes for binding to XREs in target genes and AHRR can repress the transcription activity of AHR (Hahn et al. 2009, Haarmann-Stemmann & Abel 2006).

Biological oxidations

All organisms are constantly exposed to foreign chemicals every day. These can be man-made (drugs, industrial chemicals) or natural (alkaloids, toxins from plants and animals). Uptake is usually via ingestion but inhalation and transdermal routes are also common.

The very nature of many chemicals that make them suitable for uptake by these routes, in other words their lipophilicty (favours fat solubility) is also the main reason organisms have developed mechanisms that convert them to hydrophilic (favours water solubility) compounds which are readily excreted via bile and urine. Otherwise, lipophilic chemicals would accumulate in the body and overwhelm defense mechanisms. This process is called biotransformation and is catalyzed by enzymes mainly in the liver of higher organisms but a number of other organs have considerable ability to process xenobiotica such as kidneys, gut and lungs. As well as xenobiotics, many endogenous compounds are commonly eliminated by this process.

This mechanism is of ancient origin and a major factor for its development in animals is plants. Most animals are plant eaters and thus are subject to a huge variety of chemical compounds which plants produce to stop themselves being eaten. This complex set of enzymes have several features which make them ideal for biotransformation;

(1) metabolites of the parent chemical are usually made more water soluble so it favours rapid excretion via bile and urine

(2) the enzymes possess broad and overlapping specificity to be able to deal with newly exposed chemicals

(3) metabolites of the parent generally don't have adverse biological effects.

In the real world however, all these criteria have exceptions. Many chemicals are transformed into reactive metabolites. In pharmacology, the metabolites of some parent drugs exert the desired pharmacological effect but in the case of polycyclic aromatic hydrocarbons (PAHs), which can undergo epoxidation, it results in the formation of an electrophile which can attack proteins and DNA.

Metabolism of xenobiotica occurs in several steps called Phase 1 (functionalization) and Phase 2 (conjugation). To improve water solubility, a functional group is added to or exposed on the chemical in one or more steps (Phase 1) to which hydrophilic conjugating species can be added (Phase 2). Functional groups can either be electrophilic (epoxides, carbonyl groups) or nucleophilic (hydroxyls, amino and sulfhydryl groups, carboxylic groups) (see picture).

Once chemicals undergo functionalization, the electrophilic or nucleophilic species can be detrimental to biological systems. Electrophiles can react with electron-rich macromolecules such as proteins, DNA and RNA by covalent interaction whilst nucleophiles have the potential to interact with biological receptors. That's why conjugation is so important as it mops up these potentially reactive species.

Many chemicals, when exposed to certain metabolizing enzymes can induce those enzymes, a process called enzyme induction. The effect of this is that these chemicals accelerate their own biotransformation and excretion. The reverse is also true where some chemicals cause enzyme inhibition. Some other factors that alter enzyme levels are sex, age and genetic predisposition. Between species, there can be considerable differences in biotransformation ability which is a problem faced by drug researchers interpreting toxicological results to humans.

Metabolism

Metabolic processes in human cells generate energy through the oxidation of molecules consumed in the diet and mediate the synthesis of diverse essential molecules not taken in the diet as well as the inactivation and elimination of toxic ones generated endogenously or present in the extracellular environment. The processes of energy metabolism can be classified into two groups according to whether they involve carbohydrate-derived or lipid-derived molecules, and within each group it is useful to distinguish processes that mediate the breakdown and oxidation of these molecules to yield energy from ones that mediate their synthesis and storage as internal energy reserves. Synthetic reactions are conveniently grouped by the chemical nature of the end products, such as nucleotides, amino acids and related molecules, and porphyrins. Detoxification reactions (biological oxidations) are likewise conveniently classified by the chemical nature of the toxin.

At the same time, all of these processes are tightly integrated. Intermediates in reactions of energy generation are starting materials for biosyntheses of amino acids and other compounds, broad-specificity oxidoreductase enzymes can be involved in both detoxification reactions and biosyntheses, and hormone-mediated signaling processes function to coordinate the operation of energy-generating and energy-storing reactions and to couple these to other biosynthetic processes.