Reaction: ERK1/2/5 activate RSK1/2/3

- in pathway: ERK/MAPK targets
The p90 ribosomal S6 kinases (RSK1-4) comprise a family of serine/threonine kinases that lie at the terminus of the ERK pathway. RSK family members are unusual among serine/threonine kinases in that they contain two distinct kinase domains, both of which are catalytically functional . The C-terminal kinase domain is believed to be involved in autophosphorylation, a critical step in RSK activation, whereas the N-terminal kinase domain, which is homologous to members of the AGC superfamily of kinases, is responsible for the phosphorylation of all known exogenous substrates of RSK.
RSKs can be activated by the ERKs (ERK1, 2, 5) in the cytoplasm as well as in the nucleus, they both have cytoplasmic and nuclear substrates, and they are able to move from nucleus to cytoplasm. Efficient RSK activation by ERKs requires its interaction through a docking site located near the RSK C terminus. The mechanism of RSK activation has been studied mainly with regard to ERK1 and ERK2. RSK activation leads to the phosphorylation of four essential residues Ser239, Ser381, Ser398, and Thr590, and two additional sites, Thr377 and Ser749 (the amino acid numbering refers to RSK1). ERK is thought to play at least two roles in RSK1 activation. First, activated ERK phosphorylates RSK1 on Thr590, and possibly on Thr377 and Ser381, and second, ERK brings RSK1 into close proximity to membrane-associated kinases that may phosphorylate RSK1 on Ser381 and Ser398.
Moreover, RSKs and ERK1/2 form a complex that transiently dissociates upon growth factor signalling. Complex dissociation requires phosphorylation of RSK1 serine 749, a growth factor regulated phosphorylation site located near the ERK docking site. Serine 749 is phosphorylated by the N-terminal kinase domain of RSK1 itself. ERK1/2 docking to RSK2 and RSK3 is also regulated in a similar way. The length of RSK activation following growth factor stimulation depends on the duration of the RSK/ERK complex, which, in turn, differs among the different RSK isoforms. RSK1 and RSK2 readily dissociate from ERK1/2 following growth factor stimulation stimulation, but RSK3 remains associated with active ERK1/2 longer, and also remains active longer than RSK1 and RSK2.
Reaction - small molecule participants:
ADP [nucleoplasm]
ATP [nucleoplasm]
ADP [nucleoplasm]
ATP [nucleoplasm]
ADP [nucleoplasm]
ATP [nucleoplasm]
Reactome.org reaction link: R-HSA-198746

======

Reaction input - small molecules:
ATP(4-)
ChEBI:30616
ATP(4-)
ChEBI:30616
ATP(4-)
ChEBI:30616
Reaction output - small molecules:
ADP(3-)
ChEBI:456216
ADP(3-)
ChEBI:456216
ADP(3-)
ChEBI:456216
Reactome.org link: R-HSA-198746