Reaction: Phosphorylation and release of IRF3/IRF7

- in pathway: TRAF3-dependent IRF activation pathway
Human IRF3 is activated through a two-step phosphorylation in the C-terminal domain mediated by TBK1 and/or IKKi, requiring Ser386 and/or Ser385- site 1; and a cluster of serine/threonine residues between Ser396 and Ser405- site 2 [Panne et al 2007]. Phosphorylated residues at site 2 (Ser396—Ser405) alleviate autoinhibition to allow interaction with CBP (CREB-binding protein) and facilitate phosphorylation at site 1 (Ser385 or Ser386). Phosphorylation at site 1 is required for IRF3 dimerization.
IRF3 and IRF7 transcription factors possess distinct structural characteristics; IRF7 is phosphorylated on Ser477 and Ser479 residues [Lin R et al 2000].
Since the number of serine residues involved into IRF activation remains unclear this reaction represents a minimum stoichiometry to achieve the phosphorylation of at least 3 Ser residues per each IRF transcription factor. [Lin et al 2000, Ning et al 2008]
Reaction - small molecule participants:
ADP [cytosol]
ATP [cytosol]
Reactome.org reaction link: R-HSA-918229

======

Reaction input - small molecules:
ATP(4-)
ChEBI:30616
Reaction output - small molecules:
ADP(3-)
ChEBI:456216
Reactome.org link: R-HSA-918229