Pathway: Elevation of cytosolic Ca2+ levels
Reactions in pathway: Elevation of cytosolic Ca2+ levels :
Elevation of cytosolic Ca2+ levels
Activation of non- excitable cells involves the agonist-induced elevation of cytosolic Ca2+, an essential process for platelet activation. It occurs through Ca2+ release from intracellular stores and Ca2+ entry through the plasma membrane. Ca2+ store release involves phospholipase C (PLC)-mediated production of inositol-1,4,5-trisphosphate (IP3), which in turn stimulates IP3 receptor channels to release Ca2+ from intracellular stores. This is followed by Ca2+ entry into the cell through plasma membrane calcium channels, a process referred to as store-operated calcium entry (SOCE). Stromal interaction molecule 1 (STIM1), a Ca2+ sensor molecule in intracellular stores, and the four transmembrane channel protein Orai1 are the key players in platelet SOCE. Other major Ca2+ entry mechanisms are mediated by the direct receptor-operated calcium (ROC) channel, P2X1 and transient receptor potential channels (TRPCs).
Under normal conditions the vascular endothelium supports vasodilation, inhibits platelet adhesion and activation, suppresses coagulation, enhances fibrin cleavage and is anti-inflammatory in character. Under acute vascular trauma, vasoconstrictor mechanisms predominate and the endothelium becomes prothrombotic, procoagulatory and proinflammatory in nature. This is achieved by a reduction of endothelial dilating agents: adenosine, NO and prostacyclin; and by the direct action of ADP, serotonin and thromboxane on vascular smooth muscle cells to elicit their contraction (Becker et al. 2000).
Cyclooxygenase-2 (COX-2) and endothelial nitric oxide synthase (eNOS) are primarily expressed in endothelial cells. Both are important regulators of vascular function. Under normal conditions, laminar flow induces vascular endothelial COX-2 expression and synthesis of Prostacyclin (PGI2) which in turn stimulates endothelial Nitric Oxide Synthase (eNOS) activity. PGI2 and NO both oppose platelet activation and aggregation, as does the CD39 ecto-ADPase, which decreases platelet activation and recruitment by metabolizing platelet-released ADP.
Hemostasis is a physiological response that culminates in the arrest of bleeding from an injured vessel. Under normal conditions the vascular endothelium supports vasodilation, inhibits platelet adhesion and activation, suppresses coagulation, enhances fibrin cleavage and is anti-inflammatory in character. Under acute vascular trauma, vasoconstrictor mechanisms predominate and the endothelium becomes prothrombotic, procoagulatory and proinflammatory in nature. This is achieved by a reduction of endothelial dilating agents: adenosine, NO and prostacyclin; and by the direct action of ADP, serotonin and thromboxane on vascular smooth muscle cells to elicit their contraction (Becker et al. 2000).
The chief trigger for the change in endothelial function that leads to the formation of a haemostatic thrombus is the loss of the endothelial cell barrier between blood and extracellular matrix components (Ruggeri 2002). Circulating platelets identify and discriminate areas of endothelial lesions; here, they adhere to the exposed sub endothelium. Their interaction with the various thrombogenic substrates and locally generated or released agonists results in platelet activation. This process is described as possessing two stages, firstly, adhesion - the initial tethering to a surface, and secondly aggregation - the platelet-platelet cohesion (Savage & Cattaneo et al. 2001).
Three mechansism contribute to the loss of blood following vessel injury. The vessel constricts, reducing the loss of blood. Platelets adhere to the site of injury, become activated and aggregate with fibrinogen into a soft plug that limits blood loss, a process termed primary hemostasis. Proteins and small molecules are released from granules by activated platelets, stimulating the plug formation process. Fibrinogen from plasma forms bridges between activated platelets. These events initiate the clotting cascade (secondary hemostasis). Negatively-charged phospholipids exposed at the site of injury and on activated platelets interact with tissue factor, leading to a cascade of reactions that culminates with the formation of an insoluble fibrin clot.