Pathway: Pre-NOTCH Processing in Golgi

Reactions in pathway: Pre-NOTCH Processing in Golgi :

Pre-NOTCH Processing in Golgi

NOTCH undergoes final posttranslational processing in the Golgi apparatus (Lardelli et al. 1994, Blaumueller et al. 1997, Weinmaster et al. 1991, Weinmaster et al. 1992, Uyttendaele et al. 1996). Movement of NOTCH precursors from the endoplasmic reticulum to Golgi is controlled by SEL1L protein, a homolog of C. elegans sel-1. SEL1L localizes to the endoplasmic reticulum membrane and prevents translocation of misfolded proteins, therefore serving as a quality control check (Li et al. 2010, Sundaram et al. 1993, Francisco et al. 2010). Similarly, C. elegans sel-9 and its mammalian homolog TMED2 are Golgi membrane proteins that participate in quality control of proteins transported from Golgi to the plasma membrane. Translocation of a mutant C. elegans NOTCH homolog lin-12 from the Golgi to the plasma membrane is negatively regulated by sel-9 (Wen et al. 1999). A GTPase RAB6 positively controls NOTCH trafficking through Golgi (Purcell et al. 1999).


Processing of mammalian NOTCH precursors in the Golgi typically involves the cleavage by FURIN convertase. Pre-NOTCH is a ~300 kDa protein, and cleavage by FURIN produces two fragments with approximate sizes of 110 kDa and 180 kDa. The 110 kDa fragment contains the transmembrane and intracellular domains of NOTCH and is known as NTM or NTMICD. The 189 kDa fragment contains NOTCH extracellular sequence and is known as NEC or NECD. The NTM and NEC fragments heterodimerize (Blaumueller et al. 1997, Logeat et al. 1998, Chan et al. 1998) and are held together by disulfide bonds and calcium ions (Rand et al. 2000, Gordon et al. 2009).


An optional step in Pre-NOTCH processing in the Golgi is modification by fringe enzymes. Fringe enzymes are glycosyl transferases that initiate elongation of O-linked fucose on fucosylated peptides by addition of a beta 1,3 N-acetylglucosaminyl group, resulting in formation of disaccharide chains on NOTCH EGF repeats (GlcNAc-bet1,3-fucitol). Three fringe enzymes are known in mammals: LFNG (lunatic fringe), MFNG (manic fringe) and RFNG (radical fringe). LFNG shows the highest catalytic activity in modifying NOTCH (Bruckner et al. 2000, Moloney et al. 2000). Fringe-created disaccharide chains on NOTCH EGF repeats are further extended by B4GALT1 (beta-1,4-galactosyltransferase 1), which adds galactose to the N-acetylglucosaminyl group, resulting in formation of trisaccharide Gal-beta1,4-GlcNAc-beta1,3-fucitol chains (Moloney et al. 2000, Chen et al. 2001). Formation of trisaccharide chains is the minimum requirement for fringe-mediated modulation of NOTCH signaling, although fringe-modified NOTCH expressed on the cell surface predominantly contains tetrasaccharide chains on EGF repeats. The tetrasaccharide chains are formed by sialyltransferase(s) that add sialic acid to galactose, resulting in formation of Sia-alpha2,3-Gal-beta1,4-GlcNAc-beta1,3-fucitol (Moloney et al. 2000). Three known Golgi membrane sialyltransferases could be performing this function: ST3GAL3, ST3GAL4 and ST3GAL6 (Harduin-Lepers et al. 2001). The modification of NOTCH by fringe enzymes modulates NOTCH-signaling by increasing the affinity of NOTCH receptors for delta-like ligands, DLL1 and DLL4, while decreasing affinity for jagged ligands, JAG1 and JAG2.

Signaling by NOTCH

The Notch Signaling Pathway (NSP) is a highly conserved pathway for cell-cell communication. NSP is involved in the regulation of cellular differentiation, proliferation, and specification. For example, it is utilised by continually renewing adult tissues such as blood, skin, and gut epithelium not only to maintain stem cells in a proliferative, pluripotent, and undifferentiated state but also to direct the cellular progeny to adopt different developmental cell fates. Analogously, it is used during embryonic development to create fine-grained patterns of differentiated cells, notably during neurogenesis where the NSP controls patches such as that of the vertebrate inner ear where individual hair cells are surrounded by supporting cells.
This process is known as lateral inhibition: a molecular mechanism whereby individual cells within a field are stochastically selected to adopt particular cell fates and the NSP inhibits their direct neighbours from doing the same. The NSP has been adopted by several other biological systems for binary cell fate choice. In addition, the NSP is also used during vertebrate segmentation to divide the growing embryo into regular blocks called somites which eventually form the vertebrae. The core of this process relies on regular pulses of Notch signaling generated from a molecular oscillator in the presomatic mesoderm.
The Notch receptor is synthesized in the rough endoplasmic reticulum as a single polypeptide precursor. Newly synthesized Notch receptor is proteolytically cleaved in the trans-golgi network, creating a heterodimeric mature receptor comprising of non-covalently associated extracellular and transmembrane subunits. This assembly travels to the cell surface ready to interact with specific ligands. Following ligand activation and further proteolytic cleavage, an intracellular domain is released and translocates to the nucleus where it regulates gene expression.

Signal Transduction

Signal transduction is a process in which extracellular signals elicit changes in cell state and activity. Transmembrane receptors sense changes in the cellular environment by binding ligands, such as hormones and growth factors, or reacting to other types of stimuli, such as light. Stimulation of transmembrane receptors leads to their conformational change which propagates the signal to the intracellular environment by activating downstream signaling cascades. Depending on the cellular context, this may impact cellular proliferation, differentiation, and survival. On the organism level, signal transduction regulates overall growth and behavior.
Receptor tyrosine kinases (RTKs) transmit extracellular signals by phosphorylating their protein partners on conserved tyrosine residues. Some of the best studied RTKs are EGFR (reviewed in Avraham and Yarden, 2011), FGFR (reviewed in Eswarakumar et al, 2005), insulin receptor (reviewed in Saltiel and Kahn, 2001), NGF (reviewed in Reichardt, 2006), PDGF (reviewed in Andrae et al, 2008) and VEGF (reviewed in Xie et al, 2004). RTKs frequently activate downstream signaling through RAF/MAP kinases (reviewed in McKay and Morrison, 2007 and Wellbrock et al 2004), AKT (reviewed in Manning and Cantley, 2007) and PLC- gamma (reviewed in Patterson et al, 2005), which ultimately results in changes in gene expression and cellular metabolism.
Receptor serine/threonine kinases of the TGF-beta family, such as TGF-beta receptors (reviewed in Kang et al. 2009) and BMP receptors (reviewed in Miyazono et al. 2009), transmit extracellular signals by phosphorylating regulatory SMAD proteins on conserved serine and threonine residues. This leads to formation of complexes of regulatory SMADs and SMAD4, which translocate to the nucleus where they act as transcription factors.
WNT receptors transmit their signal through beta-catenin. In the absence of ligand, beta-catenin is constitutively degraded in a ubiquitin-dependent manner. WNT receptor stimulation releases beta-catenin from the destruction complex, allowing it to translocate to the nucleus where it acts as a transcriptional regulator (reviewed in MacDonald et al, 2009 and Angers and Moon, 2009). WNT receptors were originally classified as G-protein coupled receptors (GPCRs). Although they are structurally related, GPCRs primarily transmit their signals through G-proteins, which are trimers of alpha, beta and gamma subunits. When a GPCR is activated, it acts as a guanine nucleotide exchange factor, catalyzing GDP to GTP exchange on the G-alpha subunit of the G protein and its dissociation from the gamma-beta heterodimer. The G-alpha subunit regulates the activity of adenylate cyclase, while the gamma-beta heterodimer can activate AKT and PLC signaling (reviewed in Rosenbaum et al. 2009, Oldham and Hamm 2008, Ritter and Hall 2009).
NOTCH receptors are activated by transmembrane ligands expressed on neighboring cells, which results in cleavage of NOTCH receptor and release of its intracellular domain. NOTCH intracellular domain translocates to the nucleus where it acts as a transcription factor (reviewed in Kopan and Ilagan, 2009).
Integrins are activated by extracellular matrix components, such as fibronectin and collagen, leading to conformational change and clustering of integrins on the cell surface. This results in activation of integrin-linked kinase and other cytosolic kinases and, in co-operation with RTK signaling, regulates survival, proliferation and cell shape and adhesion (reviewed in Hehlgans et al, 2007) .
Besides inducing changes in gene expression and cellular metabolism, extracellular signals that trigger the activation of Rho GTP-ases can trigger changes in the organization of cytoskeleton, thereby regulating cell polarity and cell-cell junctions (reviewed in Citi et al, 2011).