Pathway: Downregulation of SMAD2/3:SMAD4 transcriptional activity
Reactions in pathway: Downregulation of SMAD2/3:SMAD4 transcriptional activity :
Downregulation of SMAD2/3:SMAD4 transcriptional activity
Transcriptional activity of SMAD2/3:SMAD4 heterotrimer can be inhibited by formation of a complex with SKI or SKIL (SNO), where SKI or SKIL recruit NCOR and possibly other transcriptional repressors to SMAD-binding promoter elements (Sun et al. 1999, Luo et al. 1999, Strochein et al. 1999). Higher levels of phosphorylated SMAD2 and SMAD3, however, may target SKI and SKIL for degradation (Strochein et al. 1999, Sun et al. 1999 PNAS, Bonni et al. 2001) through recruitment of SMURF2 (Bonni et al. 2001) or RNF111 i.e. Arkadia (Levy et al. 2007) ubiquitin ligases to SKI/SKIL by SMAD2/3. Therefore,the ratio of SMAD2/3 and SKI/SKIL determines the outcome: inhibition of SMAD2/3:SMAD4-mediated transcription or degradation of SKI/SKIL. SKI and SKIL are overexpressed in various cancer types and their oncogenic effect is connected with their ability to inhibit signaling by TGF-beta receptor complex.
SMAD4 can be monoubiquitinated by a nuclear ubiquitin ligase TRIM33 (Ecto, Ectodermin, Tif1-gamma). Monoubiquitination of SMAD4 disrupts SMAD2/3:SMAD4 heterotrimers and leads to SMAD4 translocation to the cytosol. In the cytosol, SMAD4 can be deubiquitinated by USP9X (FAM), reversing TRIM33-mediated negative regulation (Dupont et al. 2009).
Phosphorylation of the linker region of SMAD2 and SMAD3 by CDK8 or CDK9 primes SMAD2/3:SMAD4 complex for ubiquitination by NEDD4L and SMURF ubiquitin ligases. NEDD4L ubiquitinates SMAD2/3 and targets SMAD2/3:SMAD4 heterotrimer for degradation (Gao et al. 2009). SMURF2 monoubiquitinates SMAD2/3, leading to disruption of SMAD2/3:SMAD4 complexes (Tang et al. 2011).
Transcriptional repressors TGIF1 and TGIF2 bind SMAD2/3:SMAD4 complexes and inhibit SMAD-mediated transcription by recruitment of histone deacetylase HDAC1 to SMAD-binding promoter elements (Wotton et al. 1999, Melhuish et al. 2001).
PARP1 can attach poly ADP-ribosyl chains to SMAD3 and SMAD4 within SMAD2/3:SMAD4 heterotrimers. PARylated SMAD2/3:SMAD4 complexes are unable to bind SMAD-binding DNA elements (SBEs) (Lonn et al. 2010).
Phosphorylated SMAD2 and SMAD3 can be dephosphorylated by PPM1A protein phosphatase, leading to dissociation of SMAD2/3 complexes and translocation of unphosphorylated SMAD2/3 to the cytosol (Lin et al. 2006).
SMAD4 can be monoubiquitinated by a nuclear ubiquitin ligase TRIM33 (Ecto, Ectodermin, Tif1-gamma). Monoubiquitination of SMAD4 disrupts SMAD2/3:SMAD4 heterotrimers and leads to SMAD4 translocation to the cytosol. In the cytosol, SMAD4 can be deubiquitinated by USP9X (FAM), reversing TRIM33-mediated negative regulation (Dupont et al. 2009).
Phosphorylation of the linker region of SMAD2 and SMAD3 by CDK8 or CDK9 primes SMAD2/3:SMAD4 complex for ubiquitination by NEDD4L and SMURF ubiquitin ligases. NEDD4L ubiquitinates SMAD2/3 and targets SMAD2/3:SMAD4 heterotrimer for degradation (Gao et al. 2009). SMURF2 monoubiquitinates SMAD2/3, leading to disruption of SMAD2/3:SMAD4 complexes (Tang et al. 2011).
Transcriptional repressors TGIF1 and TGIF2 bind SMAD2/3:SMAD4 complexes and inhibit SMAD-mediated transcription by recruitment of histone deacetylase HDAC1 to SMAD-binding promoter elements (Wotton et al. 1999, Melhuish et al. 2001).
PARP1 can attach poly ADP-ribosyl chains to SMAD3 and SMAD4 within SMAD2/3:SMAD4 heterotrimers. PARylated SMAD2/3:SMAD4 complexes are unable to bind SMAD-binding DNA elements (SBEs) (Lonn et al. 2010).
Phosphorylated SMAD2 and SMAD3 can be dephosphorylated by PPM1A protein phosphatase, leading to dissociation of SMAD2/3 complexes and translocation of unphosphorylated SMAD2/3 to the cytosol (Lin et al. 2006).
RNA polymerase II (Pol II) is the central enzyme that catalyses DNA- directed mRNA synthesis during the transcription of protein-coding genes. Pol II consists of a 10-subunit catalytic core, which alone is capable of elongating the RNA transcript, and a complex of two subunits, Rpb4/7, that is required for transcription initiation.
The transcription cycle is divided in three major phases: initiation, elongation, and termination. Transcription initiation include promoter DNA binding, DNA melting, and initial synthesis of short RNA transcripts. The transition from initiation to elongation, is referred to as promoter escape and leads to a stable elongation complex that is characterized by an open DNA region or transcription bubble. The bubble contains the DNA-RNA hybrid, a heteroduplex of eight to nine base pairs. The growing 3-end of the RNA is engaged with the polymerase complex active site. Ultimately transcription terminates and Pol II dissocitates from the template.
The transcription cycle is divided in three major phases: initiation, elongation, and termination. Transcription initiation include promoter DNA binding, DNA melting, and initial synthesis of short RNA transcripts. The transition from initiation to elongation, is referred to as promoter escape and leads to a stable elongation complex that is characterized by an open DNA region or transcription bubble. The bubble contains the DNA-RNA hybrid, a heteroduplex of eight to nine base pairs. The growing 3-end of the RNA is engaged with the polymerase complex active site. Ultimately transcription terminates and Pol II dissocitates from the template.
Gene expression encompasses transcription and translation and the regulation of these processes. RNA Polymerase I Transcription produces the large preribosomal RNA transcript (45S pre-rRNA) that is processed to yield 18S rRNA, 28S rRNA, and 5.8S rRNA, accounting for about half the RNA in a cell. RNA Polymerase II transcription produces messenger RNAs (mRNA) as well as a subset of non-coding RNAs including many small nucleolar RNAs (snRNA) and microRNAs (miRNA). RNA Polymerase III Transcription produces transfer RNAs (tRNA), 5S RNA, 7SL RNA, and U6 snRNA. Transcription from mitochondrial promoters is performed by the mitochondrial RNA polymerase, POLRMT, to yield long transcripts from each DNA strand that are processed to yield 12S rRNA, 16S rRNA, tRNAs, and a few RNAs encoding components of the electron transport chain. Regulation of gene expression can be divided into epigenetic regulation, transcriptional regulation, and post-transcription regulation (comprising translational efficiency and RNA stability). Epigenetic regulation of gene expression is the result of heritable chemical modifications to DNA and DNA-binding proteins such as histones. Epigenetic changes result in altered chromatin complexes that influence transcription. Gene Silencing by RNA mostly occurs post-transcriptionally but can also affect transcription. Small RNAs originating from the genome (miRNAs) or from exogenous RNA (siRNAs) are processed and transferred to the RNA-induced silencing complex (RISC), which interacts with complementary RNA to cause cleavage, translational inhibition, or transcriptional inhibition.