Pathway: Synthesis, secretion, and deacylation of Ghrelin

Reactions in pathway: Synthesis, secretion, and deacylation of Ghrelin :

Synthesis, secretion, and deacylation of Ghrelin

Ghrelin is a peptide hormone of 28 amino acid residues which is acylated at the serine-3 of the mature peptide. Ghrelin is synthesized in several tissues: X/A-like cells of the gastric mucosa (the major source of ghrelin), hypothalamus, pituitary, adrenal gland, thyroid, breast, ovary, placenta, fallopian tube, testis, prostate, liver, gall bladder, pancreas, fat tissue, human lymphocytes, spleen, kidney, lung, skeletal muscle, myocardium, vein and skin. Ghrelin binds the GHS-R1a receptor present in hypothalamus pituitary, and other tissues. Binding causes appetite stimulation and release of growth hormone. Levels of circulating ghrelin rise during fasting, peak before a meal, and fall according to the calories ingested.
Preproghrelin is cleaved to yield proghrelin which is then acylated by ghrelin O-acyltransferase to yield octanoyl ghrelin and decanoyl ghrelin. Only octanoyl ghrelin is able to bind and activate the GHS-R1a receptor. Unacylated ghrelin (des-acyl ghrelin) is also present in plasma but its function is controversial.
Acyl proghrelin is cleaved by prohormone convertase 1/3 to yield the mature acyl ghrelin and C-ghrelin. Secretion of ghrelin is inhibited by insulin, growth hormone (somatotropin), leptin, glucose, glucagon, and fatty acids. Secretion is stimulated by insulin-like growth factor-1 and muscarinic agonists.
In the bloodstream acyl ghrelin is deacylated by butyrylcholinesterase and platelet-activating factor acetylhydrolase. Other enzymes may also deacylate acyl ghrelin.

Peptide hormone metabolism

Peptide hormones are cleaved from larger precursors in the secretory system (endoplasmic reticulum, Golgi apparatus, secretory granules) of the cell. After secretion peptide hormones are modified and degraded by extracellular proteases.
Insulin processing occurs in 4 steps: formation of intramolecular disulfide bonds, formation of proinsulin-zinc-calcium complexes, proteolytic cleavage of proinsulin by PCSK1 (PC1/3) and PCSK2 to yield insulin, translocation of the granules across the cytosol to the plasma membrane.
During Synthesis, secretion, and deacetylation of Ghrelin, proghrelin is acylated by ghrelin O-acyltransferase and cleaved by PCSK1 to yield the mature acyl ghrelin and C-ghrelin. In the bloodstream acyl ghrelin is deacylated by butyrylcholinesterase and platelet-activating factor acetylhydrolase.
During Metabolism of Angiotensinogen to Angiotensin, Renin cleaves angiotensinogen to yield a decapaptide, angiotensin I (angiotensin-1, angiotensin-(1-10)). Two C-terminal amino acid residues of angiotensin I are then removed by angiotensin-converting enzyme (ACE), located on the surface of endothelial cells, to yield angiotensin II (angiotensin-2, angiotensin-(1-8)), the active peptide that causes vasoconstriction, resorption of sodium and chloride, excretion of potassium, water retention, and aldosterone secretion. More recently other, more tissue-localized pathways leading to angiotensin II and alternative derivatives of angiotensinogen have been identified and described.
Incretin synthesis, secretion, and inactivation occurs through processing of incretin precursors (preproGLP-1 and preproGIP) by PCSK1. After secretion both incretins (GLP-1 and GIP) can be inactivated by cleavage by DPP4.
Peptide hormone biosynthesis describes processing of glycoprotein hormones (those which include carbohydrate side-chains) and corticotropin.

Metabolism of proteins

Metabolism of proteins, as annotated here, covers the full life cycle of a protein from its synthesis to its posttranslational modification and degradation, at various levels of specificity. Protein synthesis is accomplished through the process of Translation of an mRNA sequence into a polypeptide chain. Protein folding is achieved through the function of molecular chaperones which recognize and associate with proteins in their non-native state and facilitate their folding by stabilizing the conformation of productive folding intermediates (Young et al. 2004). Following translation, many newly formed proteins undergo Post-translational protein modification, essentially irreversible covalent modifications critical for their mature locations and functions (Knorre et al. 2009), including gamma carboxylation, synthesis of GPI-anchored proteins, asparagine N-linked glycosylation, O-glycosylation, SUMOylation, ubiquitination, deubiquitination, RAB geranylgeranylation, methylation, carboxyterminal post-translational modifications, neddylation, and phosphorylation. Peptide hormones are synthesized as parts of larger precursor proteins whose cleavage in the secretory system (endoplasmic reticulum, Golgi apparatus, secretory granules) is annotated in Peptide hormone metabolism. After secretion, peptide hormones are modified and degraded by extracellular proteases (Chertow, 1981 PMID:6117463). Protein repair enables the reversal of damage to some amino acid side chains caused by reactive oxygen species. Pulmonary surfactants are lipids and proteins that are secreted by the alveolar cells of the lung that decrease surface tension at the air/liquid interface within the alveoli to maintain the stability of pulmonary tissue (Agassandian and Mallampalli 2013). Nuclear regulation, transport, metabolism, reutilization, and degradation of surfactant are described in the Surfactant metabolism pathway. Amyloid fiber formation, the accumulation of mostly extracellular deposits of fibrillar proteins, is associated with tissue damage observed in numerous diseases including late phase heart failure (cardiomyopathy) and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's.