Pathway: Regulation of insulin secretion
Regulation of insulin secretion
Increased blood glucose levels from dietary carbohydrate play a dominant role in insulin release from the beta cells of the pancreas. Glucose catabolism in the beta cell is the transducer that links increased glucose levels to insulin release. Glucose uptake and glycolysis generate cytosolic pyruvate; pyruvate is transported to mitochondria and converted both to oxaloacetate which increases levels of TCA cycle intermediates, and to acetyl-CoA which is oxidized to CO2 via the TCA cycle. The rates of ATP synthesis and transport to the cytosol increase, plasma membrane ATP-sensitive inward rectifying potassium channels (KATP channels) close, the membrane depolarizes, and voltage-gated calcium channels in the membrane open (Muoio and Newgard 2008; Wiederkehr and Wollheim 2006).
Elevated calcium concentrations near the plasma membrane cause insulin secretion in two phases: an initial high rate within minutes of glucose stimulation and a slow, sustained release lasting longer than 30 minutes. In the initial phase, 50-100 insulin granules already docked at the membrane are exocytosed. Exocytosis is rendered calcium-dependent by Synaptotagmin V/IX, a calcium-binding membrane protein located in the membrane of the docked granule, although the exact action of Synapototagmin in response to calcium is unknown. Calcium also causes a translocation of reserve granules within the cell towards the plasma membrane for release in the second, sustained phase of secretion. Human cells contain L-type (continually reopening), P/Q-type (long burst), R-type (long burst), and T-type (short burst) calcium channels and these partly account for differences between the two phases of secretion. Other factors that distinguish the two phases are not yet fully known (Bratanova-Tochkova et al. 2002; Henquin 2000; MacDonald et al. 2005).
Glucagon and Insulin act through various metabolites and enzymes that target specific steps in metabolic pathways for sugar and fatty acids. The processes responsible for the long-term control of fat synthesis and short term control of glycolysis by key metabolic products and enzymes are annotated in this module as six specific pathways:
Pathway 1. Glucagon signalling in metabolic pathways: In response to low blood glucose, pancreatic alpha-cells release glucagon. The binding of glucagon to its receptor results in increased cAMP synthesis, and Protein Kinase A (PKA) activation.
Pathway 2. PKA mediated phosphorylation:PKA phosphorylates key enzymes, e.g., 6-Phosphofructo-2-kinase /Fructose-2,6-bisphosphatase (PF2K-Pase) at serine 36, and regulatory proteins, e.g., Carbohydrate Response Element Binding Protein (ChREBP) at serine 196 and threonine 666.
In brief, the binding of insulin to its receptor leads to increased protein phosphatase activity and to hydrolysis of cAMP by cAMP phosphodiesterase. These events counteract the regulatory effects of glucagon.
Pathway 3: Insulin stimulates increased synthesis of Xylulose-5-phosphate (Xy-5-P). Activation of the insulin receptor results indirectly in increased Xy-5-P synthesis from Glyceraldehyde-3-phosphate and Fructose-6-phosphate. Xy-5-P, a metabolite of the pentose phosphate pathway, stimulates protein phosphatase PP2A.
Pathway 4: AMP Kinase (AMPK) mediated response to high AMP:ATP ratio: In response to diet with high fat content or low energy levels, the cytosolic AMP:ATP ratio is increased. AMP triggers a complicated cascade of events. In this module we have annotated only the phosphorylation of ChREBP by AMPK at serine 568, which inactivates this transcription factor.
Pathway 5: Dephosphorylation of key metabolic factors by PP2A: Xy-5-P activated PP2A efficiently dephosphorylates phosphorylated PF2K-Pase resulting in the higher output of F-2,6-P2 that enhances PFK activity in the glycolytic pathway. PP2A also dephosphorylates (and thus activates) cytosolic and nuclear ChREBP.
Pathway 6: Transcriptional activation of metabolic genes by ChREBP: Dephosphorylated ChREBP activates the transcription of genes involved in glucose metabolism such as pyruvate kinase, and lipogenic genes such as acetyl-CoA carboxylase, fatty acid synthetase, acyl CoA synthase and glycerol phosphate acyl transferase.
The illustration below summarizes this network of events. Black lines are metabolic reactions, red lines are negative regulatory events, and green lines are positive regulatory events (figure reused with permission from Veech (2003) - Copyright (2003) National Academy of Sciences, U.S.A.).
At the same time, all of these processes are tightly integrated. Intermediates in reactions of energy generation are starting materials for biosyntheses of amino acids and other compounds, broad-specificity oxidoreductase enzymes can be involved in both detoxification reactions and biosyntheses, and hormone-mediated signaling processes function to coordinate the operation of energy-generating and energy-storing reactions and to couple these to other biosynthetic processes.