Pathway: Regulation of TP53 Degradation

Reactions in pathway: Regulation of TP53 Degradation :

Regulation of TP53 Degradation

In unstressed cells, TP53 (p53) has a short half-life as it undergoes rapid ubiquitination and proteasome-mediated degradation. The E3 ubiquitin ligase MDM2, which is a transcriptional target of TP53, plays the main role in TP53 protein down-regulation (Wu et al. 1993). MDM2 forms homodimers and homo-oligomers, but also functions as a heterodimer/hetero-oligomer with MDM4 (MDMX) (Sharp et al. 1999, Cheng et al. 2011, Huang et al. 2011, Pant et al. 2011). The heterodimers of MDM2 and MDM4 may be especially important for downregulation of TP53 during embryonic development (Pant et al. 2011).

The nuclear localization of MDM2 is positively regulated by AKT- or SGK1- mediated phosphorylation (Mayo and Donner 2001, Zhou et al. 2001, Amato et al. 2009, Lyo et al. 2010). Phosphorylation of MDM2 by CDK1 or CDK2 decreases affinity of MDM2 for TP53 (Zhang and Prives 2001). ATM and CHEK2 kinases, activated by double strand DNA breaks, phosphorylate TP53, reducing its affinity for MDM2 (Banin et al. 1998, Canman et al. 1998, Khanna et al. 1998, Chehab et al. 1999, Chehab et al. 2000). At the same time, ATM phosphorylates MDM2, preventing MDM2 dimerization (Cheng et al. 2009, Cheng et al. 2011). Both ATM and CHEK2 phosphorylate MDM4, triggering MDM2-mediated ubiquitination of MDM4 (Chen et al. 2005, Pereg et al. 2005). Cyclin G1 (CCNG1), transcriptionally induced by TP53, targets the PP2A phosphatase complex to MDM2, resulting in dephosphorylation of MDM2 at specific sites, which can have either a positive or a negative impact on MDM2 function (Okamoto et al. 2002).

In contrast to MDM2, E3 ubiquitin ligases RNF34 (CARP1) and RFFL (CARP2) can ubiquitinate phosphorylated TP53 (Yang et al. 2007).

In addition to ubiquitinating MDM4 (Pereg et al. 2005), MDM2 can also undergo auto-ubiquitination (Fang et al. 2000). MDM2 and MDM4 can be deubiquitinated by the ubiquitin protease USP2 (Stevenson et al. 2007, Allende-Vega et al. 2010). The ubiquitin protease USP7 can deubiquitinate TP53, but in the presence of DAXX deubiquitinates MDM2 (Li et al. 2002, Sheng et al. 2006, Tang et al. 2006).

The tumor suppressor p14-ARF, expressed from the CDKN2A gene in response to oncogenic or oxidative stress, forms a tripartite complex with MDM2 and TP53, sequesters MDM2 from TP53, and thus prevents TP53 degradation (Zhang et al. 1998, Parisi et al. 2002, Voncken et al. 2005).

For review of this topic, please refer to Kruse and Gu 2009.

RNA Polymerase II Transcription

RNA polymerase II (Pol II) is the central enzyme that catalyses DNA- directed mRNA synthesis during the transcription of protein-coding genes. Pol II consists of a 10-subunit catalytic core, which alone is capable of elongating the RNA transcript, and a complex of two subunits, Rpb4/7, that is required for transcription initiation.
The transcription cycle is divided in three major phases: initiation, elongation, and termination. Transcription initiation include promoter DNA binding, DNA melting, and initial synthesis of short RNA transcripts. The transition from initiation to elongation, is referred to as promoter escape and leads to a stable elongation complex that is characterized by an open DNA region or transcription bubble. The bubble contains the DNA-RNA hybrid, a heteroduplex of eight to nine base pairs. The growing 3-end of the RNA is engaged with the polymerase complex active site. Ultimately transcription terminates and Pol II dissocitates from the template.

Gene expression (Transcription)

Gene expression encompasses transcription and translation and the regulation of these processes. RNA Polymerase I Transcription produces the large preribosomal RNA transcript (45S pre-rRNA) that is processed to yield 18S rRNA, 28S rRNA, and 5.8S rRNA, accounting for about half the RNA in a cell. RNA Polymerase II transcription produces messenger RNAs (mRNA) as well as a subset of non-coding RNAs including many small nucleolar RNAs (snRNA) and microRNAs (miRNA). RNA Polymerase III Transcription produces transfer RNAs (tRNA), 5S RNA, 7SL RNA, and U6 snRNA. Transcription from mitochondrial promoters is performed by the mitochondrial RNA polymerase, POLRMT, to yield long transcripts from each DNA strand that are processed to yield 12S rRNA, 16S rRNA, tRNAs, and a few RNAs encoding components of the electron transport chain. Regulation of gene expression can be divided into epigenetic regulation, transcriptional regulation, and post-transcription regulation (comprising translational efficiency and RNA stability). Epigenetic regulation of gene expression is the result of heritable chemical modifications to DNA and DNA-binding proteins such as histones. Epigenetic changes result in altered chromatin complexes that influence transcription. Gene Silencing by RNA mostly occurs post-transcriptionally but can also affect transcription. Small RNAs originating from the genome (miRNAs) or from exogenous RNA (siRNAs) are processed and transferred to the RNA-induced silencing complex (RISC), which interacts with complementary RNA to cause cleavage, translational inhibition, or transcriptional inhibition.