Pathway: RAB geranylgeranylation

Reactions in pathway: RAB geranylgeranylation :

RAB geranylgeranylation

Human cells have more than 60 RAB proteins that are involved in trafficking of proteins in the endolysosomal system. These small GTPases contribute to trafficking specificity by localizing to the membranes of different endocytic compartments and interacting with effectors such as sorting adaptors, tethering factors, kinases, phosphatases and tubular-vesicular cargo (reviewed in Stenmark et al, 2009; Wandinger-Ness and Zerial, 2014). RAB localization depends on a number of factors including C-terminal prenylation, the sequence of an upstream hypervariable regions and what nucleotide is bound (Chavrier et al, 1991; Ullrich et al, 1993; Soldati et al, 1994; Farnsworth et al, 1994; Seabra, 1996; Wu et al, 2010; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014). In the active, GTP-bound form, prenylated RAB proteins are membrane associated, while in the inactive GDP-bound form, RABs are extracted from the target membrane and exist in a soluble form in complex with GDP dissociation inhibitors (GDIs) (Ullrich et al, 1993; Soldati et al, 1994; Gavriljuk et al, 2103). Conversion between the inactive and active form relies on the activities of RAB guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) (Yoshimura et al, 2010; Wu et al, 2011; Pan et al, 2006; Frasa et al, 2012; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014).
Newly synthesized RABs are bound by a RAB escort protein, CHM (also known as REP1) or CHML (REP2) (Alexandrov et al, 1994; Shen and Seabra, 1996). CHM/REP proteins are the substrate-binding component of the trimeric RAB geranylgeranyltransferase enzyme (GGTaseII) along with the two catalytic subunits RABGGTA and RABGGTB (reviewed in Gutkowska and Swiezewska, 2012; Palsuledesai and Distefano, 2015). REP proteins recruit the unmodified RAB in its GDP-bound state to the GGTase for sequential geranylgeranylation at one or two C-terminal cysteine residues (Alexandrov et al, 1994; Seabra et al 1996; Shen and Seabra, 1996; Baron and Seabra, 2008). After geranylgeranylation, CHM/REP proteins remain in complex with the geranylgeranylated RAB and escort it to its target membrane, where its activity is regulated by GAPs, GEFs, GDIs and membrane-bound GDI displacement factors (GDFs) (Sivars et al, 2003; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014).

Post-translational protein modification

After translation, many newly formed proteins undergo further covalent modifications that alter their functional properties. Modifications associated with protein localization include the attachment of oligosaccharide moieties to membrane-bound and secreted proteins (N-linked and O-linked glycosylation), the attachment of lipid (RAB geranylgeranylation) or glycolipid moieties (GPI-anchored proteins) that anchor proteins to cellular membranes, and the vitamin K-dependent attachment of carboxyl groups to glutamate residues. Modifications associated with functions of specific proteins include gamma carboxylation of clotting factors, hypusine formation on eukaryotic translation initiation factor 5A, conversion of a cysteine residue to formylglycine (arylsulfatase activation), methylation of lysine and arginine residues on non-histone proteins (protein methylation), protein phosphorylation by secretory pathway kinases, and carboxyterminal modifications of tubulin involving the addition of polyglutamate chains.

Protein ubiquitination and deubiquitination play a major role in regulating protein stability and, together with SUMOylation and neddylation, can modulate protein function as well.

Metabolism of proteins

Metabolism of proteins, as annotated here, covers the full life cycle of a protein from its synthesis to its posttranslational modification and degradation, at various levels of specificity. Protein synthesis is accomplished through the process of Translation of an mRNA sequence into a polypeptide chain. Protein folding is achieved through the function of molecular chaperones which recognize and associate with proteins in their non-native state and facilitate their folding by stabilizing the conformation of productive folding intermediates (Young et al. 2004). Following translation, many newly formed proteins undergo Post-translational protein modification, essentially irreversible covalent modifications critical for their mature locations and functions (Knorre et al. 2009), including gamma carboxylation, synthesis of GPI-anchored proteins, asparagine N-linked glycosylation, O-glycosylation, SUMOylation, ubiquitination, deubiquitination, RAB geranylgeranylation, methylation, carboxyterminal post-translational modifications, neddylation, and phosphorylation. Peptide hormones are synthesized as parts of larger precursor proteins whose cleavage in the secretory system (endoplasmic reticulum, Golgi apparatus, secretory granules) is annotated in Peptide hormone metabolism. After secretion, peptide hormones are modified and degraded by extracellular proteases (Chertow, 1981 PMID:6117463). Protein repair enables the reversal of damage to some amino acid side chains caused by reactive oxygen species. Pulmonary surfactants are lipids and proteins that are secreted by the alveolar cells of the lung that decrease surface tension at the air/liquid interface within the alveoli to maintain the stability of pulmonary tissue (Agassandian and Mallampalli 2013). Nuclear regulation, transport, metabolism, reutilization, and degradation of surfactant are described in the Surfactant metabolism pathway. Amyloid fiber formation, the accumulation of mostly extracellular deposits of fibrillar proteins, is associated with tissue damage observed in numerous diseases including late phase heart failure (cardiomyopathy) and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's.