Pathway: Regulation of MECP2 expression and activity

Reactions in pathway: Regulation of MECP2 expression and activity :

Regulation of MECP2 expression and activity

Transcription of the MECP2 gene is known to be regulated by methylation of the promoter and the first intron, but the responsible methyltransferases are not known (Nagarajan et al. 2008, Franklin et al. 2010, Liyanage et al. 2013).

Translation of MECP2 mRNA is negatively regulated by the microRNA miR-132. Transcription of miR-132 is regulated by BDNF signaling, through an unknown mechanism (Klein et al. 2007, Su et al. 2015).

Binding of MECP2 to other proteins and to DNA is regulated by posttranslational modifications, of which phosphorylation has been best studied. Calcium dependent protein kinases, PKA and CaMK IV, activated by neuronal membrane depolarization, phosphorylate MECP2 at threonine residue T308 (corresponding to T320 in the longer MECP2 splicing isoform, MECP2_e1). Phosphorylation at T308 correlates with neuronal activity and inhibits binding of MECP2 to the nuclear receptor co-repressor complex (NCoR/SMRT) (Ebert et al. 2013). In resting neurons, MECP2 is phosphorylated at serine residue S80, which results in a decreased association of MECP2 with chromatin. Nuclear serine/threonine protein kinase HIPK2 phosphorylates MECP2 on serine residue S80 (Bracaglia et al. 2009). In activity-induced neurons, upon neuronal membrane depolarization, MECP2 S80 becomes dephosphorylated, and MECP2 acquires phosphorylation on serine S423 (corresponding to mouse Mecp2 serine S421). CaMK IV is one of the kinases that can phosphorylate MECP2 on S423. Phosphorylation of MECP2 at S423 increases MECP2 binding to chromatin (Zhou et al. 2006, Tao et al. 2009, Qiu et al. 2012). AURKB phosphorylates MECP2 at serine residue S423 in dividing adult neuronal progenitor cells (Li et al. 2014).

Besides binding to the NCoR/SMRT co-repressor complex (Lyst et al. 2013, Ebert et al. 2013), MECP2 binds the SIN3A co-repressor complex. This interaction involves the transcriptional repressor domain of MECP2 and the amino terminal part of the HDAC interaction domain (HID) of SIN3A. HDAC1 and HDAC2 are part of the SIN3A co-repressor complex that co-immunoprecipitates with MECP2 (Nan et al. 1998). While binding of MECP2 to SIN3A at target genes is associated with transcriptional repression, binding to CREB1 at target genes is associated with transcriptional activation (Chahrour et al. 2008, Chen et al. 2013). Function of MECP2 can be affected by binding to FOXG1, another gene mutated in Rett syndrome besides MECP2 and CDKL5 (Dastidar et al. 2012), and HTT (Huntingtin) (McFarland et al. 2013). The subnuclear localization of MECP2 may be affected by binding to the Lamin B receptor (LBR) (Guarda et al. 2009).

RNA Polymerase II Transcription

RNA polymerase II (Pol II) is the central enzyme that catalyses DNA- directed mRNA synthesis during the transcription of protein-coding genes. Pol II consists of a 10-subunit catalytic core, which alone is capable of elongating the RNA transcript, and a complex of two subunits, Rpb4/7, that is required for transcription initiation.
The transcription cycle is divided in three major phases: initiation, elongation, and termination. Transcription initiation include promoter DNA binding, DNA melting, and initial synthesis of short RNA transcripts. The transition from initiation to elongation, is referred to as promoter escape and leads to a stable elongation complex that is characterized by an open DNA region or transcription bubble. The bubble contains the DNA-RNA hybrid, a heteroduplex of eight to nine base pairs. The growing 3-end of the RNA is engaged with the polymerase complex active site. Ultimately transcription terminates and Pol II dissocitates from the template.

Gene expression (Transcription)

Gene expression encompasses transcription and translation and the regulation of these processes. RNA Polymerase I Transcription produces the large preribosomal RNA transcript (45S pre-rRNA) that is processed to yield 18S rRNA, 28S rRNA, and 5.8S rRNA, accounting for about half the RNA in a cell. RNA Polymerase II transcription produces messenger RNAs (mRNA) as well as a subset of non-coding RNAs including many small nucleolar RNAs (snRNA) and microRNAs (miRNA). RNA Polymerase III Transcription produces transfer RNAs (tRNA), 5S RNA, 7SL RNA, and U6 snRNA. Transcription from mitochondrial promoters is performed by the mitochondrial RNA polymerase, POLRMT, to yield long transcripts from each DNA strand that are processed to yield 12S rRNA, 16S rRNA, tRNAs, and a few RNAs encoding components of the electron transport chain. Regulation of gene expression can be divided into epigenetic regulation, transcriptional regulation, and post-transcription regulation (comprising translational efficiency and RNA stability). Epigenetic regulation of gene expression is the result of heritable chemical modifications to DNA and DNA-binding proteins such as histones. Epigenetic changes result in altered chromatin complexes that influence transcription. Gene Silencing by RNA mostly occurs post-transcriptionally but can also affect transcription. Small RNAs originating from the genome (miRNAs) or from exogenous RNA (siRNAs) are processed and transferred to the RNA-induced silencing complex (RISC), which interacts with complementary RNA to cause cleavage, translational inhibition, or transcriptional inhibition.