Pathway: Heme biosynthesis

Reactions in pathway: Heme biosynthesis :

Heme biosynthesis

Although heme is synthesised in virtually all tissues, the principal sites of synthesis are erythroid cells (~85%) and hepatocytes (most of the remainder). Eight enzymes are involved in heme biosynthesis, four each in the mitochondria and the cytosol (Layer et al. 2010). The process starts in the mitochondria with the condensation of succinyl CoA (from the TCA cycle) and glycine to form 5-aminolevulinate (ALA). The next four steps take place in the cytosol. Two molecules of ALA are condensed to form the monopyrrole porphobilinogen (PBG). The next two steps convert four molecules of PBG into the cyclic tetrapyrrole uroporphyringen III, which is then decarboxylated into coproporphyrinogen III. The last three steps occur in the mitochondria and involve modifications to the tetrapyrrole side chains and finally, insertion of iron. In addition to these synthetic steps, a spontaneous cytosolic reaction allows the formation of uroporphyringen I which is then enzymatically decarboxylated to coproporphyrinogen I, which cannot be metabolized further in humans. Also, lead can inactivate ALAD, the enzyme that catalyzes PBG synthesis, and ferrochelatase, the enzyme that catalyzes heme synthesis (Ponka et al. 1999, Aijoka et al. 2006).

The porphyrias are disorders that arise from defects in the enzymes of heme biosynthesis. Defective pathway enzymes after ALA synthase result in accumulated substrates which can cause either skin problems, neurological complications, or both due to their toxicity in higher concentrations. They are broadly classified as hepatic porphyrias or erythropoietic porphyrias, based on the site of the overproduction of the substrate. Each defect is described together with the reaction it affects (Peoc'h et al. 2016).

Metabolism of porphyrins

Porphyrins are heterocyclic macrocycles, consisting of four pyrrole subunits (tetrapyrrole) linked by four methine (=CH-) bridges. The extensive conjugated porphyrin macrocycle is chromatic and the name itself, porphyrin, is derived from the Greek word for purple. The aromatic character of porphyrins can be seen by NMR spectroscopy.
Porphyrins readily combine with metals by coordinating them in the central cavity. Iron (heme) and magnesium (chlorophyll) are two well known examples although zinc, copper, nickel and cobalt form other known metal-containing phorphyrins. A porphyrin which has no metal in the cavity is called a free base.
Some iron-containing porphyrins are called hemes (heme-containing proteins or hemoproteins) and these are found extensively in nature ie. hemoglobin. Hemoglobin is quantitatively the most important hemoprotein. The hemoglobin iron is the transfer site of oxygen and carries it in the blood all round the body for cell respiration. Other examples are cytochromes present in mitochondria and endoplasmic reticulum which takes part in electron transfer events, catalase and peroxidase whic protect the body against the oxidant hydrogen peroxide and tryptophan oxygenase which is present in intermediary metabolism. Hemoproteins are synthesized in all mammalian cells and the major sites are erythropoietic tissue and the liver.

The processes by which heme is synthesized, transported, and metabolized are a critical part of human iron metabolism (Severance and Hamze 2009); here the core processes of heme biosynthesis and catabolism have been annotated.

Metabolism

Metabolic processes in human cells generate energy through the oxidation of molecules consumed in the diet and mediate the synthesis of diverse essential molecules not taken in the diet as well as the inactivation and elimination of toxic ones generated endogenously or present in the extracellular environment. The processes of energy metabolism can be classified into two groups according to whether they involve carbohydrate-derived or lipid-derived molecules, and within each group it is useful to distinguish processes that mediate the breakdown and oxidation of these molecules to yield energy from ones that mediate their synthesis and storage as internal energy reserves. Synthetic reactions are conveniently grouped by the chemical nature of the end products, such as nucleotides, amino acids and related molecules, and porphyrins. Detoxification reactions (biological oxidations) are likewise conveniently classified by the chemical nature of the toxin.

At the same time, all of these processes are tightly integrated. Intermediates in reactions of energy generation are starting materials for biosyntheses of amino acids and other compounds, broad-specificity oxidoreductase enzymes can be involved in both detoxification reactions and biosyntheses, and hormone-mediated signaling processes function to coordinate the operation of energy-generating and energy-storing reactions and to couple these to other biosynthetic processes.