Pathway: Cholesterol biosynthesis

Reactions in pathway: Cholesterol biosynthesis :

Cholesterol biosynthesis

Cholesterol is synthesized de novo from acetyl CoA. The overall synthetic process is outlined in the attached illustration. Enzymes whose regulation plays a major role in determining the rate of cholesterol synthesis in the body are highlighted in red, and connections to other metabolic processes are indicated. The transformation of zymosterol into cholesterol can follow either of routes, one in which reduction of the double bond in the isooctyl side chain is the final step (cholesterol synthesis via desmosterol, also known as the Bloch pathway) and one in which this reduction is the first step (cholesterol biosynthesis via lathosterol, also known as the Kandutsch-Russell pathway). The former pathway is prominent in the liver and many other tissues while the latter is prominent in skin, where it may serve as the source of the 7-dehydrocholesterol that is the starting point for the synthesis of D vitamins. Defects in several of the enzymes involved in this process are associated with human disease and have provided useful insights into the regulatory roles of cholesterol and its synthetic intermediates in human development (Gaylor 2002; Herman 2003; Kandutsch & Russell 1960; Mitsche et al. 2015; Song et al. 2005).

Metabolism of lipids

Lipids are hydrophobic but otherwise chemically diverse molecules that play a wide variety of roles in human biology. They include ketone bodies, fatty acids, triacylglycerols, phospholipids and sphingolipids, eicosanoids, cholesterol, bile salts, steroid hormones, and fat-soluble vitamins. They function as a major source of energy (fatty acids, triacylglycerols, and ketone bodies), are major constituents of cell membranes (cholesterol and phospholipids), play a major role in their own digestion and uptake (bile salts), and participate in numerous signaling and regulatory processes (steroid hormones, eicosanoids, phosphatidylinositols, and sphingolipids) (Vance & Vance 2008 - URL).

The central steroid in human biology is cholesterol, obtained from animal fats consumed in the diet or synthesized de novo from acetyl-coenzyme A. (Vegetable fats contain various sterols but no cholesterol.) Cholesterol is an essential constituent of lipid bilayer membranes and is the starting point for the biosyntheses of bile acids and salts, steroid hormones, and vitamin D. Bile acids and salts are mostly synthesized in the liver. They are released into the intestine and function as detergents to solubilize dietary fats. Steroid hormones are mostly synthesized in the adrenal gland and gonads. They regulate energy metabolism and stress responses (glucocorticoids), salt balance (mineralocorticoids), and sexual development and function (androgens and estrogens). At the same time, chronically elevated cholesterol levels in the body are associated with the formation of atherosclerotic lesions and hence increased risk of heart attacks and strokes. The human body lacks a mechanism for degrading excess cholesterol, although an appreciable amount is lost daily in the form of bile salts and acids that escape recycling.

Aspects of lipid metabolism currently annotated in Reactome include lipid digestion, mobilization, and transport; fatty acid, triacylglycerol, and ketone body metabolism; peroxisomal lipid metabolism; phospholipid and sphingolipid metabolism; cholesterol biosynthesis; bile acid and bile salt metabolism; and steroid hormone biosynthesis.

Metabolism

Metabolic processes in human cells generate energy through the oxidation of molecules consumed in the diet and mediate the synthesis of diverse essential molecules not taken in the diet as well as the inactivation and elimination of toxic ones generated endogenously or present in the extracellular environment. The processes of energy metabolism can be classified into two groups according to whether they involve carbohydrate-derived or lipid-derived molecules, and within each group it is useful to distinguish processes that mediate the breakdown and oxidation of these molecules to yield energy from ones that mediate their synthesis and storage as internal energy reserves. Synthetic reactions are conveniently grouped by the chemical nature of the end products, such as nucleotides, amino acids and related molecules, and porphyrins. Detoxification reactions (biological oxidations) are likewise conveniently classified by the chemical nature of the toxin.

At the same time, all of these processes are tightly integrated. Intermediates in reactions of energy generation are starting materials for biosyntheses of amino acids and other compounds, broad-specificity oxidoreductase enzymes can be involved in both detoxification reactions and biosyntheses, and hormone-mediated signaling processes function to coordinate the operation of energy-generating and energy-storing reactions and to couple these to other biosynthetic processes.